

Universidade Federal de Viçosa - UFV Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Engenharia Elétrica - DEL

Implantação de Usina Solar Fotovoltaica de 1 MW no norte de Minas Gerais

ELT 554 - TRABALHO DE CONCLUSÃO DE CURSO

DISCENTE: BRENO PEREIRA MUNDIM ORIENTADOR: Prof. Me. JOÃO MARCUS SOARES CALLEGARI COORIENTADOR: Prof. Dr. HEVERTON AUGUSTO PEREIRA

Viçosa, 24 de fevereiro de 2022

BREND PEREIRA MUNDIM

Implantação de Usina Solar Fotovoltaica de 1 MW no Norte de Minas Gerais

Trabalho de Conclusão de Curso submetido ao Departamento de Engenharia Elétrica da Universidade Federal de Viçosa para a obtenção dos créditos referentes à disciplina ELT 554 do curso de Especialização em Sistemas Fotovoltaicos Isolados e Conectados à Rede Elétrica.

Orientador: Prof. Me. JOÃO MARCUS SOARES CALLEGARI

Coorientador: Prof. Dr. HEVERTON AUGUSTO PEREIRA

Viçosa, 24 de fevereiro de 2022

ATA DE APROVAÇÃO BRENO PEREIRA MUNDIM

Implantação de Usina Solar Fotovoltaica de 1 MW no norte de Minas Gerais

Trabalho de Conclusão de Curso submetido ao Departamento de Engenharia Elétrica da Universidade Federal de Viçosa para a obtenção dos créditos referentes à disciplina ELT 554 do curso de Especialização em Sistemas Fotovoltaicos Isolados e Conectados à Rede Elétrica.

Aprovada em 24 de fevereiro de 2022.

Presidente e Orientador: Prof. Me. João Marcus Soares Callegari - UFV

Cooerientador: Prof. Dr. Heverton Augusto Pereira - UFV

Membro Titular: Prof. Dr. Erick Matheus da Silveira Brito - UFV

Membro Titular: Ma. Shirleny Pedrosa Freitas

DEDICATÓRIA

Dedico este trabalho

Dedico este trabalho ao meu pai Edmilson Justino Mundim (In Memoriam), cuja a presença foi essencial para a minha vida.

AGRADECIMENTOS

A Deus por ter me dado saúde e força, por estar sempre presente em minha vida.

Agradeço à equipe do GESEP, por toda dedicação e empenho para com a Pós-Graduação Lato Sensu em Sistema Fotovoltaico Isolado e Conectados à Rede.

A todos que de alguma forma contribuíram para essa importante fase de minha vida, o meu muito obrigado!

RESUMO

Nos últimos anos, as fontes alternativas de energia têm crescido consideravelmente, especialmente a energia solar fotovoltaica. Desde a Resolução Normativa 687/2015, as fazendas solares se tornaram investimentos atrativos devido a possibilidade do compartilhamento de energia de minigeração entre um grupo de pessoas (CPF ou CNPJ) que estejam na mesma área de concessão. Esse trabalho realiza o dimensionamento, estudo de viabilidade e projeto da subestação de entrada para implantação de uma fazenda solar com potência instalada de 1 MW, que será implantada na cidade de Pirapora/MG, MG.

O empreendimento é enquadrado no âmbito da minigeração distribuída, atendido em média tensão trifásica 13,8 kV @ 60 Hz. A demanda contratada é de 1.000 kW, enquanto o sistema solar fotovoltaico de 1.296 kW conta com 2.400 módulos de 540 Wp e 08 inversores de 125 kW. A instalação dos módulos é feita no solo, ocupando uma área aproximada de 6.144 m² e orientados com azimute de 17°. O projeto apresentou viabilidade, com uma taxa interna de retorno de 21% a.a. e pay-back descontado de 8 anos, justificando o elevado investimento inicial com um rápido retorno.

Palavras-chave: Minigeração, Sistema Fotovoltaico, Viabilidade econômica.

Lista de Figuras

Figura 1- Registro por satélite do local de instalação da UFV (17°19'43.36"S 44°52'24.75"O)	1/
Figura 2: Irradiação Solar na cidade de Pirapora. Fonte: Estimate, UFV	
Figura 3: Layout de distribuição dos módulos	
Figura 4 : Quadro de junção CC	
Figura 5 : Unidade conversora	
Figura 6: Modelo de Unidade Conversora.Fonte:Sindustrial	
Figura 7:Topologia de subestação abrigada com potência instalada	
Figura 8: Dimensões da cabine de média	28
Figura 9 : Esquemático utilizado para dimensionamento do TC	
Figura 10 : Malha de aterramento tipo quadrado cheio	32
Figura 11 : Detalhes da haste de aterramento e interligação	
Figura 12 : Rede de Distribuição SE Pirapora	34
Figura 13: Resumo das contribuições da concessionária e da usina solar fotovoltaica (UFV)
para as correntes de CC nas diversas barras.	35
Figura 14 : Coordenograma das proteções 67(1), 67(2), 67N(1) e 67N(2)	39
Figura 15: Diagrama unifilar da usina solar fotovoltaica	45
Figura 16: Diagrama unifilar cubículo de MT. Fonte: Autor	46
Figura 17: Diagrama unifilar unidade conversora (SKID). Fonte: Autor	47
Figura 18:Diagrama unifilar geradores fotovoltaicos.Fonte:Autor	48

Lista de Tabelas

Tabela 1: Perdas estimadas e valores típicos em UFVs	15
Tabela 2 : Escolha da inclinação do módulo. Fonte: (VILLALVA, 2012)	16
Tabela 3: Características do módulo fotovoltaico utilizados na instalação	17
Tabela 4: Características do módulo fotovoltaico utilizados na instalação. Fonte: Sungrov	w.
	18
Tabela 5: Resumo do dimensionamento elétrico da UFV	19
Tabela 6: Resumo das características elétricas dos equipamentos constituintes do quadr	0
de junção CC. Fonte: Autor	
Tabela 7: Premissas para dimensionamento de cabos CC.	
Tabela 8 : Dimensionamento dos cabos CC de acordo com a ABNT NBR 16690	
Tabela 9: Premissas para dimensionamento de cabos CA	23
Tabela 10 : Dimensionamento dos cabos CA e barramento de acordo com a ABNT NBR 5410.	23
Tabela 11: Dimensionamento dos condutores de aterramento do lado CC e CA da UFV.	
Tabela 12: Estimativa de materiais necessários para implantação da UFV	25
Tabela 13: Dimensionamento dos equipamentos da subestação	28
Tabela 14: Memorial de cálculo do transformador de corrente	29
Tabela 15 : Dimensionamento de TP de medição em 13,8 kV	30
Tabela 16 : Quadro de carga da subestação para alimentação auxiliar	30
Tabela 17 : Quadro de carga da subestação para alimentação da proteção	30
Tabela 18 : Especificação do disjuntor de MT	31
Tabela 19: Dimensionamento de TCs de medição em 13,8 kV	31
Tabela 20: Dimensionamento de TP de medição em 13,8 kV	32
Tabela 21 : Valores base utilizados nos estudos de proteção.	33
Tabela 22 : Impedância e correntes de curto-circuito fase-fase, fase-terra e trifásica na	
barra da SE CEMIG Pirapora.	33
Tabela 23 : Dados de impedância de sequência dos cabos da rede RDP da SE CEMIG	
Pirapora até a barra de conexão do acessante. *Valores obtidos para uma temperatura d	
90 °C	34
Tabela 24: Dados de impedância de sequência dos cabos de cobre utilizados na rede	
interna do acessante. *Valores obtidos para uma temperatura de 90 °C	
Tabela 25 : Características elétricas do transformador a seco	
Tabela 26 : Impedâncias equivalentes de sequência positiva e zero do sistema.	
Tabela 27: Ajustes do religador para coordenação, fornecidas pela concessionária	
Tabela 28 : Definição das proteções e suas respectivas parametrizações de acordo com a	
norma CEMIG ND5.31.	
Tabela 29 : Cálculo do CAPEX	
Tabela 30 : Dados utilizados. Fonte:Autor.	
Tabela 31 : Fluxo de caixa. Fonte: Autor.	
Tabela 32 : Fluxo de caixa. Fonte:Autor	
Tabela 33: Análise de viabilidade do projeto	43

Lista de Abreviação

ABNT Associação Brasileira de Normas Técnicas

ANEEL Agência Nacional de Energia Elétrica
ANATEL Agência Nacional de Telecomunicação

CAPEX Despesa de Capital
C.A Corrente Alternada
C.C Corrente Contínua

CEMIG Companhia Energética de Minas Gerais
DPS Dispositivo de Proteção Contra Surto

FV Módulos Fotovoltaicos

GESEP Gerência de Especialistas em Sistema Elétricos

INMETRO Instituto Nacional de Metrologia IPCA Índice de Preço ao Consumidor

MT Média Tensão

OSM Operação e Manutenção
OPEX Despesa de Operação
PVC Policloreto de Vinila
QGBT Quadro de Baixa Tensão

RTC Relação do Transformador de Corrente

RN Resolução Normativa

SKID Conjunto de Equipamentos Montados em Estrutura Metálica

SFG Hexafluoreto de Enxofre

TC Transformador de Corrente
TIR Taxa Interna de Retorno

TMA Taxa Mínima de Atratividade TP Transformador de Potencial

UFV Usina Fotovoltaica

VPL Valor Presente Líquido

Lista de Símbolos

 A_m Área do Módulo

 D_{fv} Dimensões do Módulo

 D_{inv} Dimensões do Inversor

FSI Fator de Sobredimensionamento do Inversor

 FP_{inv} Fator de Potência Inversor

 I_{dsp} Corrente de Descarga Nominal

 I_{fus} Corrente de Fundição Fusível I_{sc} Corrente de Curto-Circuito

 I_{sec} Corrente Máxima Série Fotovoltaica

 $I_{dsp,max}$ Corrente de Descarga Máxima

 I_{mp} Corrente Máxima Potência

 $I_{serie,max}$ Corrente c.c Máxima por Série FV

 $I_{sc,max}$ Corrente c.c Máxima de Curto I_{ca} Corrente Máxima c.a(RMS)

 I_b Corrente de Base

 k_{pmax} Coeficientes de Temperatura Potência Máxima

 k_{voc} Coeficiente de Temperatura Tensão de Circuito Aberto

 m_{fv} Massa do Módulo

 m_{inv} Massa do Inversor η_{fv} Eficiência do Módulo

Número de Células FV

 N_{inv} Número de Inversores Fotovoltaicos

Número de Séries FV Permitidas

 $N_{jun,cc}$ Número de Caixas de Junção $N_{t,cc}$ Número Total de Caixas Junção

Número de Séries FV

Número de Módulos por Série Fotovoltaica

 $N_{fv,inv}$ Número de Módulos por Inversor

 $N_{arranjo}$ Número de Arranjos FV por Inversor

Notation Número de Polos

 N_t Número de Módulos Fotovoltaicos

 N_{afv} Número de Módulos FV por Arranjo Fotovoltaico

 $P_{arranjo}$ Potência Nominal do Arranjo FV

 P_{mp} Potência Máxima

 P_{ca} Potência c.a Nominal

 $P_{ca,usina}$ Potência Nominal c.a Usina FV Potência Nominal c.c da Usina FV Potência Máxima c.c por Inverosr

 $P_{scute{e}rie}$ Potência Nominal da Série Fotovoltaica

 $egin{array}{ll} t_{dps} & ext{Tempo de Resposta DPS} \ V_{oc} & ext{Tensão de Circuito Aberto} \end{array}$

 V_{dps} Tensão Máxima de Operação DPS

 V_{mp} Tensão Máxima Potência

 V_{ca} Tensão Nominal c.a(RMS)

 $V_{cc,min}$ Tensão de Partida

 V_{sec} Tensão de Isolamento Seccionadora

 V_{fus} Tensão de Isolamento Fusível

 ΔV_{mppt} Faixa de Operação c.c por Série FV

 ΔT_{inv} Faixa de Temperatura de Operação

Sumário

1-	Analis	se do Local da Instalação	
1	.1 AN	ÁLISE DO LOCAL DA INSTALAÇÃO	13
1	.2 AN	ÁLISE DO EFEITO DE SOMBREAMENTO E OUTRAS PERDAS	13
2-	Dime	nsionamento da Cabine Primária e Sistema Fotovoltaico	16
2	.1 DIN	MENSIONAMENTO DO SISTEMA FOTOVOLTAICO	16
	2.1.1	DIMENSIONAMENTO DOS MÓDULOS FOTOVOLTAICOS	17
	2.1.2	DIMENSIONAMENTO DOS INVERSORES	17
	2.1.3	DIMENSIONAMENTO DA PROTEÇÃO CC E CA	20
	2.1.4	DIMENSIONAMENTO DOS CABOS CC	22
	2.1.5	DIMENSIONAMENTO DOS CABOS CA	23
	2.1.6	ESTRUTURAS DE FIXAÇÃO E ATERRAMENTO DA UFV	24
2	.2 UN	IDADE CONVERSORA	25
2	.3 DIN	MENSIONAMENTO DA CABINE PRIMÁRIA	26
		TOPOLOGIA ADOTADA	
	2.3.2	CARACTERÍSTICAS CONSTRUTIVAS E ELÉTRICAS CABINE PRIMÁRIA	27
		COMPONENTES DO SISTEMA DE PROTEÇÃO: DISJUNTOR, RELÉ	
		SFORMADORES DE TENSÃO E CORRENTE	
		COMPONENTES DO SISTEMA DE MEDIÇÃO	
		ATERRAMENTO DA SUBESTAÇÃO	
2		TUDOS DE PROTEÇÃO	
		CÁLCULO DAS CORRENTES DE CURTO-CIRCUITO	
		PARAMETRIZAÇÃO DAS FUNÇÕES DE PROTEÇÃO	
		ESTUDO DE SELETIVIDADE E COORDENAÇÃO	
		se de Viabilidade Econômica	
		ÁLISE DE TÉCNICA E ECONÔMICA DE INVESTIMENTOS	
3	.2 PA	<i>'BACK</i>	41
3	.3 VAI	LOR PRESENTE LÍQUIDO	42
		ÁLISE DA VIABILIDADE	
4-	Projet	to Elétrico	44
4	.1 PRO	DJETO ELÉTRICO: DIAGRAMA UNIFILAR	44
4	.2 MEI	MORIAL DESCRITIVO	48
5-	Concl	usão	50
6-	Refer	ências Bibliográficas	51
7-	Anexo	ns .	52

1- Análise do Local da Instalação

O Norte de Minas é uma região onde possui uma alta incidência de radiação solar, importante fator para viabilizar a construção de uma usina solar fotovoltaica (UFV). Além disso, outra característica favorável a implantação de geradores fotovoltaicos (FV) é baixo nível de chuvas na região que ficam concentrados no verão. Este capítulo objetiva (i) analisar a localização da usina solar fotovoltaica de 1 MW no município de Pirapora/MG; (ii) apresentar a capacidade de aproveitamento da irradiação solar disponível no local da instalação para geração solar fotovoltaica; e (iii) identificar eventuais obstáculos, perdas por sombreamento e intrínsecas dos sistemas para a instalação da UFV.

1.1 ANÁLISE DO LOCAL DA INSTALAÇÃO

A tensão de fornecimento primária à UFV é de 13,8kV @ 60 Hz, conectada ao sistema de distribuição em média tensão da concessionária CEMIG. Esse empreendimento é enquadrado para atender ao mercado cativo de energia elétrica, regulamentado pelas Resoluções Normativas (RN) nº 482 e 687 da Agência Nacional de Energia Elétrica (ANEEL).

Esta UFV foi concebida para enquadramento na regulamentação de micro/minigeração, no sistema de compensação (créditos de energia) e no formato de geração compartilhada de consumidores. Por meio de consórcio e/ou cooperativa, um percentual da geração da UFV (ou créditos) é alocado para os diversos clientes de uma mesma área de concessão. Este modelo de negócio passou a ter grande crescimento no Brasil, com empresas especializadas em construção de grandes UFVs (sendo unicamente responsável por sua implantação e manutenção) e posterior venda da sua energia produzida (ou créditos) para terceiros.

A demanda contratada desta instalação é igual a 1 MW, uma vez que a RN estabelece que o sistema de energia solar fotovoltaica (mesmo sob condições de consumo nulo) não pode ter uma potência instalada de inversores maior que a demanda contratada. A UFV está localizada nas coordenadas geográficas 17°19'43.36" S e 44°52'24.75" O. A Figura 1 apresenta o registro por satélite do local em que unidade geradora será instalada. Percebe-se que o terreno é pouco acidentado, plano e possui uma área de 35.495,16 m² com dimensões de 155,67 por 228,01 m. Está área é ampla e nivelada, não precisando de grandes adequações e obras civis, como terraplanagem.

1.2 ANÁLISE DO EFEITO DE SOMBREAMENTO E OUTRAS PERDAS

Por conta da instalação em solo, os módulos fotovoltaicos (FV) foram devidamente ajustados com inclinação de 17° e voltados ao norte (azimute de 0°). Portanto, a perda devido ao posicionamento e geografia do local é nula.

A perda de produção também é afetada pela temperatura. Sabe-se que a tensão dos módulos fotovoltaicos é grandemente afetada a variação de temperatura: quanto mais alta a temperatura, menor a tensão gerada na saída da sua caixa de junção. Conforme será visto no próximo capítulo, as perdas percentuais de potência $P_{temp}^{\%}$ por temperatura podem ser estimadas por:

$$P_{temp}^{\%} = k_{p,max} \times \Delta T = 0.35 \frac{\%}{\text{°C}} \times (45 - 25) \text{°C} = 7.0\%, \tag{1}$$

onde $k_{p,max}$ é o coeficiente de temperatura fornecido pelo fabricante do módulo JKM540M e ΔT é a diferença entre a temperatura de operação das células (40°C) e a temperatura nas condições padrões de teste (25°C). A equação **Erro! Fonte d e referência não encontrada.** refere-se ao desvio de produção dos módulos FV em relação às suas condições de teste. A sobrecarga do inversor é utilizada para contornar estas questões, conforme será visto no próximo capítulo.

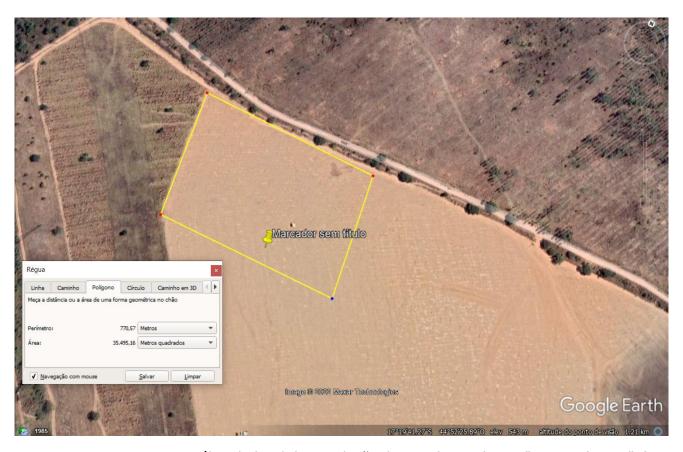


Figura 1- Registro por satélite do local de instalação da UFV (17°19'43.36"S 44°52'24.75"O).

Na literatura é possível encontrar estudos vinculados ao desempenho de sistemas fotovoltaicos em diferentes regiões e ângulos de inclinação dos módulos fotovoltaicos, nos quais apontam variações de perda de eficiência por sujidade entre 1 a 25% (HICKEL,2016). Assume-se, também, uma perda por sombreamento mínima de 1%, já que a localização da UFV sofre pouca influência de obstáculos causadores de sombra.

A Tabela 1 apresenta o resumo das perdas estimadas para a UFV em questão e valores típicos de perdas em sistemas fotovoltaicos.

Tabela 1: Perdas estimadas e valores típicos em UFVs.

Fatores de Perdas	Faixa típica (%)	Estimado (%)
Sombreamento da UFV	0 a 5	1
Sujidade sobre a UFV	1 a 25	11,4
Perdas de produção devido temperatura	0 a 10	7,6
Valor total estimado de perdas		20

2- Dimensionamento da Cabine Primária e Sistema Fotovoltaico

Em qualquer projeto de uma UFV, inicialmente, define-se a geração desejada, os equipamentos a serem usados, condicionador de potência e entre outros. O sistema é projetado para uma capacidade de geração de 1 MWp por se tratar de um projeto piloto para um modelo de negócio com possibilidade de expansão para até 5 MWp (limite para minigeração). O sistema projetado será fixo, ou seja, sem seguidor solar.

2.1 DIMENSIONAMENTO DO SISTEMA FOTOVOLTAICO

Os dados solarimétricos de Pirapora/MG são obtidos por meio do *software* ESTIMATE criado pelo Grupo GESEP da Universidade Federal de Viçosa, conforme Figura 2.

Figura 2: Irradiação Solar na cidade de Pirapora. Fonte: Estimate, UFV.

Segundo VILLALVA (2012), não existe consenso definido sobre o melhor método para definir o ângulo para instalação dos módulos solares. A Tabela 2 apresenta uma diretriz para escolha do ângulo de inclinação dos módulos fotovoltaicos em função da latitude geográfica da região, possibilitando uma boa produção média de energia ao longo do ano. Não é recomendado instalação com ângulo inferior a 10° para evitar o acúmulo de poeira sobre os módulos.

rabela 2 : Escolla da Iliciliação do Illodulo. I	ronte: (VILLALVA, 2012).

Latitude Geográfica do local	Ângulo de Inclinação
0° a 10°	a=10°
11° a 20°	α=latitude
21° a 30°	a=latitude + 5°
31° a 40°	a=latitude + 10
41° ou mais	a=latitude + 15°

Portanto, a melhor inclinação dos módulos fotovoltaicos é de 17°, não sendo necessário fazer correções.

2.1.1 DIMENSIONAMENTO DOS MÓDULOS FOTOVOLTAICOS

Para a implantação da usina fotovoltaica de 1MWp, seriam necessários idealmente 1852 módulos com potência de 540Wp para atingir o objetivo. Entretanto, como há perdas na geração e transmissão, esse projeto será composto por 2.400 painéis resultando em uma potência CC instalada de 1.296 MWp.

As características e especificações técnicas dos módulos fotovoltaicos (FV) utilizados neste sistema estão apresentadas na Tabela 3. Mais informações podem ser encontradas nas folhas de dados do módulo fotovoltaico nos Anexos.

Tabela 3: Características	do módulo	fotovoltaico	utilizados r	na instalação.

Parâmetros	Símbolo	Valor
Modelo	-	JKM540M-72H4-TV
Garantia do produto	-	12 anos
Garantia de perda de produção	-	25 anos
Tecnologia das células	-	Mono-Cristalino
Potência máxima*	P_{mp}	540 W
Tensão de máxima potência*	V_{mp}	40,76 V
Corrente de máxima potência*	I_{mp}	13,25 A
Tensão de circuito aberto*	V_{oc}	49,26 V
Corrente de curto-circuito	I_{sc}	13,93 A
	k_{pmax}	-0,35%/°C
Coeficientes de temperatura	k_{voc}	-0,28%/°C
	k_{isc}	0,048%/°C
Número de células FV	N_{cel}	144
Temperatura operação nominal	T_{noct}	40 <u>±</u> 3 °C
Eficiência do módulo	η_{fv}	20,94%
Massa do módulo	m_{fv}	29,4 kg
Área do módulo	A_m	2,58 m²
Dimensões do módulo	D_{fv}	2274x1134x35mm
Bitolas dos cabos c.c. de saída	-	4 mm²

^{*}Informações no STC: 25º e 1000ºC

Os valores de tensão, corrente e potência apresentados na Tabela 3 são válidos para as condições climáticas no STC (do inglês Standard test conditions): 25 °C e 1000 W/m².

2.1.2 DIMENSIONAMENTO DOS INVERSORES

O dimensionamento de um inversor depende da potência dos grupos de painéis FV, tecnologia, características elétricas do módulo escolhido para o projeto, características ambientais do local e por fim da topologia de instalação

escolhida (ex.: inversor central, inversor descentralizado, microinversor, instalação interna ou externa, etc.) (PINHO e GALDINHO, 2014).

A topologia adotada no projeto será uma descentralização dos inversores. Essa filosofia permite que a usina continue operando uma grande parte mesmo que haja falha em um dos inversores, devido a isso será adotado um inversor para cada conjunto de módulos fotovoltaicos.

O inversor é o equipamento responsável por realizar a interface elétrica entre os módulos fotovoltaicos (CC) e a rede elétrica (CA). Os inversores SUNGROW SG125HV são capazes de atender os 8 níveis de tensões do módulo 3 do Prodist. Estão devidamente homologados junto ao INMETRO e contam com a certificação na ANATEL dos sistemas de monitoramento Wi-Fi. Além disso, atendem as normas ABNT-NBR-16149, ABNTNBR-16150 e ABNT-NBR-IEC-62116. As características e especificações técnicas principais estão apresentadas na Tabela 4.

Tabela 4: Características do módulo fotovoltaico utilizados na instalação. Fonte: Sungrov	Tabela 4:	Características do	o módulo	fotovoltaico	utilizados na	instalação.	Fonte: Sungroy
---	-----------	--------------------	----------	--------------	---------------	-------------	----------------

Parâmetros	Símbolo	Valor
Modelo	-	SUNGROW SG125HV
Garantia do produto	-	10 anos
Máxima tensão CC por série FV	-	1500 V
Faixa de operação do MPPT	ΔV_{mppt}	860~1450 V
Tensão CC de partida	$V_{cc,min}$	860/920 V
Corrente CC máxima por série FV	$I_{serie,max}$	148 A
Corrente CC máxima de curto	I _{sc,max}	240 A
Número de séries FV permitidas	$N_{inv,serie}$	1
Proteção de sobretensão	_	DPS CC tipo II/CA tipo II
Potência CA nominal	P_{ca}	125 kW
Máxima corrente CA (RMS)	I_{ca}	120 A
Tensão nominal de saída CA (RMS)	V_{ca}	600V ~ 60 Hz
Fator de potência	FP_{inv}	Unitário
Conexão CA	_	Trifásico (3F+PE)
Dimensões	D_{inv}	670×902×296 mm
Massa	m_{inv}	76,5 kg
Ambiente de operação	-	IP65 NEMA 4x
Faixa de temperatura de operação	ΔT_{inv}	-25~60 °C

A distribuição dos módulos fotovoltaicos escolhida é mostrada na Figura 3. Conforme notado, há uma simetria de geração de cada arranjo, de modo que número de painéis em série e paralelo sejam mesmo, além da economia de cabeamento e bandejamento.

Como o projeto da usina possui 2.400 módulos, e cada arranjo possui 300 módulos, a usina possuirá 8 arranjos. As potências de pico por inversor e da usina FV estão resumidas na Tabela 5, assim como outras características importantes do dimensionamento da usina FV. Um total de aproximadamente

 $6.144~{\rm m}^2$ de área serão necessários apenas para comportar os módulos FV desta UFV.

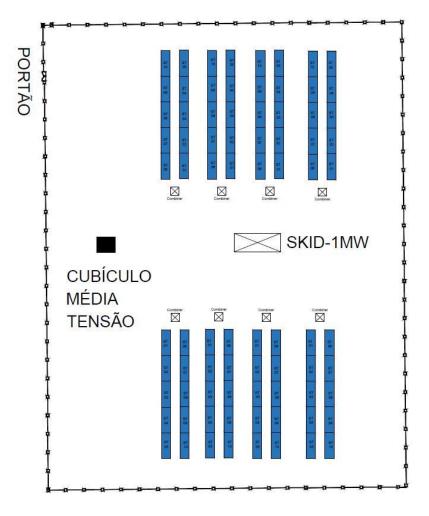


Figura 3: Layout de distribuição dos módulos.

Tabela 5: Resumo do dimensionamento elétrico da UFV.

Parâmetro	Símbolo	Valor
Número de séries FV por inversor	$N_{scute{e}rie}$	10
Número de módulos FV por série fotovoltaica	N_{sfv}	30
Potência nominal da série fotovoltaica*	$P_{scute{e}rie}$	16,2 kW
Número de arranjos FV por inversor	$N_{arranjo}$	10
Número de módulos FV por arranjo fotovoltaico	N_{afv}	300
Potência nominal do arranjo fotovoltaico*	$P_{arranjo}$	162,05 kW
Número de módulos fotovoltaicos por inversor	$N_{fv,inv}$	300
Potência máxima CC por inversor*	P_{fv}	222 kW
Fator de sobredimensionamento do inversor	FSI	1,29
Número de inversores fotovoltaicos	N_{inv}	8
Número de módulos fotovoltaicos	N_t	2400
Potência nominal CC da usina FV*	$P_{cc,usina}$	1,29 MW
Potência nominalCA da usina FV	$P_{ca,usina}$	1 MW

^{*}Informações no STC: 25º e 1000ºC

2.1.3 DIMENSIONAMENTO DA PROTEÇÃO CC E CA

Para a proteção no lado CC da UFV, são previstos quadros de junção CC (ou string box/combiner box) com possibilidade de conexão de até 10 séries fotovoltaicas. O quadro de junção CC utilizado no projeto da UFV é mostrado na Figura 4, de PVC com grau de proteção IP65, na qual os seguintes dispositivos são destacados:

- Dispositivo de proteção contra surtos (DPS) CC, classe II, conforme informações elétricas da Tabela 6.
- Seccionadora Tripolar CC, conforme informações elétricas da Tabela 6;
- Fusíveis CC 15 A, conforme informações elétricas da Tabela 6.

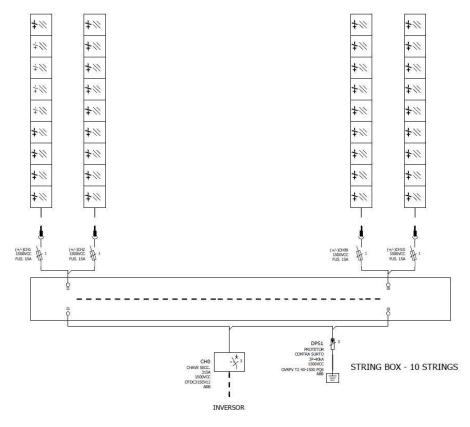


Figura 4 : Quadro de junção CC.

Tabela 6 : Resumo das características elétricas dos equipamentos constituintes do quadro de junção CC. Fonte: Autor.

Parâmetros gerais	Símbolo	Valor
Número de caixas c.c. por inversor	$N_{jun,cc}$	1
Número total de caixas CC	$N_{t,cc}$	8
Parâmetros DPS (IEC 61643-31)	Símbolo	Valor
Tensão máxima de operação contínua	V_{dps}	1500 V
Tempo de resposta típico	t_{dps}	< 25 ns
Tecnologia de proteção	_	Varistor óxido metálico
Corrente de descarga nominal - $8/20 \mu s$	I_{dsp}	10 kA

	-	
Corrente de descarga máxima - $8/20 \mu s$	$I_{dsp,max}$	40 kA
Indicação de proteção funcional	_	Verde – ok
		Vermelho - defeito
Modo de proteção	1	+/PE, -/PE, +/-
Classe	ı	II
Nível de proteção	$V_{dps,max}$	5 kV
Parâmetros seccionadora (IEC609473)	Símbolo	Valor
Número de polos	N_{polos}	3
Corrente máxima por série fotovoltaica	I_{sec}	315 A
Tensão de isolamento	V_{sec}	1500 V
Parâmetros fusível	Símbolo	Valor
Tensão de isolamento	V_{fus}	1500 V
Corrente de fundição	I_{fus}	15 A

Para a proteção no lado CA da UFV, são previstos quadro baixa tensão CA conforme Figura 5. Oito inversores são conectados ao quadro CA. Além disso, os seguintes dispositivos são destacados por quadro CA:

- Disjuntores dos Inversores tripolar de caixa moldada ABB TMAX T2L 690V, proteção termomagnética 160 A, 70 kA/600 V;
- Disjuntor Geral tripolar fixo ABB E1.2N 1600 EKIP 3P, proteção termomagnética 1600 A, 50 kA/600V;
- Fusível de 15 A proteção do Trafo de serviços auxiliares.

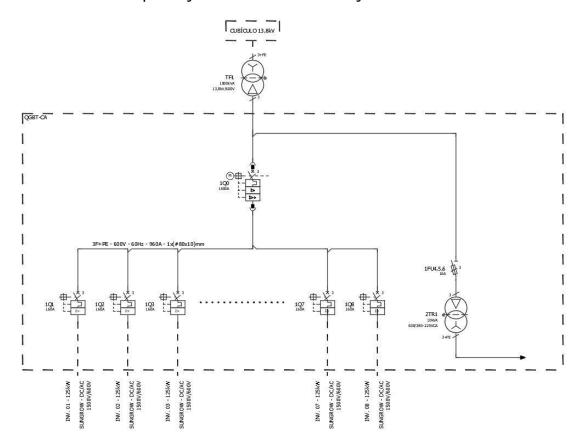


Figura 5 : Unidade conversora.

2.1.4 DIMENSIONAMENTO DOS CABOS CC

O sistema fotovoltaico, seja ele isolado ou conectado à rede, tem toda a sua interligação entre seus componentes efetuada por cabos e suas conexões.

Os cabos devem respeitar as polaridades positivas e negativas das caixas de ligação do sistema fotovoltaico, seguindo as cores vermelhas para condutores positivos e preta, para condutores negativos.

Os conectores para painéis fotovoltaicos utilizados mundialmente são chamados de MC4, esses conectores foram fabricados com exclusividades para painéis fotovoltaicos e possuem uma série de vantagens, dentre elas: (i) a facilidade de conexão entre os painéis, seja em série ou paralelo, ou com inversores; (ii) proteção UV, contra umidade e intempéries; (iii) travamento de forma automática, é de fácil montagem; e (iv) acabamento profissional (NEOSOLAR,2016).

As premissas para dimensionamento dos cabos CC da série e arranjo fotovoltaico são destacadas na Tabela 7.

Tabela 7: Premissas para dimensionamento de cabos CC.

Premissas e considerações
Cabos satisfazem NBR 16612 e 16690
Temperatura ambiente: 30°C
Temperatura de operação: 90°C
Cabos instalados ao ar livre protegidos do sol
Método de instalação com dois cabos unipolares encostados um ao
outro na horizontal
Distância máxima da série fotovoltaica ao respectivo inversor: 20m
Condutividade do cobre em 90° C: 44 m/Ωmm²
Queda de tensão máxima (relação ao ponto de máxima potência): 3%

Opta-se pelo cabo de 4,0 mm² para conexão de um módulo ao outro e conexão da série fotovoltaica à sua *combiner box*, pois é a bitola especificada no *datasheet* do módulo. A partir das premissas da Tabela 7, o dimensionamento dos cabos CC é desenvolvido de acordo com as diretrizes da ABNT NBR 16690, satisfazendo os critérios de seção transversal mínima, máxima condução de corrente e queda de tensão, simultaneamente. Os resultados dos cálculos são mostrados na Tabela 8.

Tabela 8 : Dimensionamento dos cabos CC de acordo com a ABNT NBR 16690.

Critérios	Bitola calculada
Seção transversal mínima	2,5 mm ²
Máxima condução de corrente	4 mm ²
Queda de tensão	4 mm ²
Bitola do cabo CC final	4 mm ²

O cabeamento de conexão entre a combiner box e o inversor, de acordo com a norma ABNT NBR 16690, deverá ser capaz de suportar 1,25 vezes a corrente de curto-circuito na temperatura máxima de operação, além de estar protegido contra falhas de terra e curto-circuito. A escolha foi pelo cabo alumínio de seção de 150mm² com isolação XLPE de 1,8kV.

2.1.5 DIMENSIONAMENTO DOS CABOS CA

Os cabos CA são responsáveis por interligar o inversor ao barramento CA do quadro geral de distribuição. De acordo com a NBR 5410, o cabo deverá suportar 1,25 vezes a corrente nominal.

As premissas para dimensionamento dos cabos CA são destacadas na Tabela 9. Os dimensionamentos levam em consideração as distâncias: (i) dos inversores ao quadro de baixa tensão (QGBT), (ii) transformador elevador da UFV ao cubículo de MT e (iii) do QGBT da UFV ao transformador elevador da UFV.

Tabela 9: Premissas para dimensionamento de cabos CA.

Premissas e considerações
Isolação XLPE, cabo unipolar 0,6/1 kV de cobre
Distância máxima do inversor ao quadro de junção CA: 10 m
Distância máxima do quadro de junção CA ao QGBT da usina FV: 50 m
Distância máxima do QGBT da usina ao transformador: 20 m
Queda de tensão máxima inferior a 4%
Temperatura ambiente: 30°C
Proteções de sobrecorrente e curto-circuito devidamente dimensionadas

A partir das premissas da Tabela 9 o dimensionamento dos cabos CA é desenvolvido de acordo com as diretrizes da ABNT NBR 5410, satisfazendo os critérios de seção transversal mínima, máxima condução de corrente e queda de tensão, simultaneamente. Parte-se do pressuposto que os dispositivos de proteção foram devidamente dimensionados na seção anterior, de forma que os critérios de sobrecarga e curto-circuito já estão sendo satisfeitos. Os resultados dos dimensionamentos são mostrados na Tabela 10.

Tabela 10: Dimensionamento dos cabos CA e barramento de acordo com a ABNT NBR 5410.

	Critérios	Bitola calculada
	Seção transversal mínima	50 mm ²
	Máxima condução de	70 mm²
Inversor ao QGBT	corrente	
	Queda de tensão	70 mm²
	Bitola do cabo CA final	70 mm²
	Seção transversal mínima	25 mm²

Transformador ao Cubículo de MT	Máxima condução de corrente	35 mm²			
	Queda de tensão	35 mm²			
	Bitola do cabo CA final	35 mm²			
Barramento					
QGBT da UFV ao	Barramento	#80x10mm			
transformador	Corrente Nominal de Operação	1600A			

2.1.6 ESTRUTURAS DE FIXAÇÃO E ATERRAMENTO DA UFV

A Tabela 11 apresenta a seção transversal dos condutores de aterramento do lado CC e CA da UFV, devidamente dimensionada conforme ABNT NBR 5410 e 16690.

Em sistemas fotovoltaicos conectados à rede, se faz necessário realizar o aterramento de proteção dos equipamentos, por meio da conexão da carcaça condutor à terra do circuito, e o aterramento funcional do sistema, conectando o lado CA à terra através do condutor neutro. Com relação ao lado CC deve ser aterrado seguindo as orientações do fabricante do inversor e do módulo fotovoltaico.

Tabela 11: Dimensionamento dos condutores de aterramento do lado CC e CA da UFV.

Seção transversal dos condutores de aterramento	Valor
Aterramento de estruturas e carcaças metálicas no lado	16 mm ²
c.c.	
Aterramento de estruturas e carcaças metálicas no lado	25 mm ²
c.a.	
Haste de Aterramento Estilo Cantoneira Galvanizada	25x5x2,4 m

No lado CC da UFV, o condutor de aterramento utilizado para aterrar as partes metálicas expostas do arranjo fotovoltaico tem seção mínima de 16 mm² de cobre. No lado CA, o condutor de aterramento utilizado para aterrar o condutor neutro, objetivando o funcionamento seguro e confiável da instalação tem seção mínima de 25 mm².

Com relação à montagem, os módulos são dispostos em perfis fixados no solo. O ângulo de instalação dos módulos, em relação a superfície, é de 17º, de modo a facilitar a autolimpeza dos módulos e otimizar a geração do sistema. É necessária uma atenção especial com a forma de instalação dos painéis afim de evitar a criação de sombras. O espaçamento entre as fileiras foi de 5 metros para permitir a circulação de máquinas de limpeza dos módulos e a supressão vegetal.

Perfis e suportes são de alumínio liga 6063-T5 anodizado fosco e periféricos em aço Inox 304 para garantir maior resistência à corrosão. Os sistemas de

fixação da estrutura resistem a rajadas de vento, com velocidade de até 60 km/h.

A Tabela 12 apresenta uma estimativa de alguns materiais necessários para implantação da UFV, no que diz respeito às estruturas de fixação e aterramento.

Tabela 12: Estimativa de materiais necessários para implantação da UFV.

Materiais	Qtd. estimada
Cabo solar preto com proteção UV 4 mm ²	4800 m
Cabo solar vermelho com proteção UV 4 mm ²	4800 m
Cabo solar Verde/Amarelo com proteção UV 6 mm ²	400 m
Cabo AL 150 mm² isolação XLPE 1,8 Kv preto	300 m
Cabo AL 150 mm² isolação XLPE 1,8 kV vermelho	300 m
Conectores MC4 Macho+Fêmea	250 un.
Grampo intermediário 35 mm em alumínio	4736 un.
Grampo de aterramento	64 un.
Grampo terminador 35 mm em alumínio	88 un.
Base Frontal de Alumínio 1,20 m	384un.
Base Traseira de Alumínio 1,6 m	384un.
Emenda para perfil de alumínio	14084 un.
Clip de aço para aterramento estrutura e módulos	4736 un.
Perfil de alumínio 4,5 m anodizado para módulos	384 un.
Perfil de alumínio 3,70 m anodizado para módulos	1344 un.

2.2 UNIDADE CONVERSORA

Responsável por receber os condutores CC que chegam do campo para conectar nos inversores, a unidade conversora (SKID), comporta todos os equipamentos em uma única instalação trazendo uma segurança de operação à usina solar, pois divide a parte CC da CA. Logo, os equipamentos de proteção CC ficam no campo e os demais equipamentos de proteção CA e transformação ficam no SKID, conforme Figura 6.

O SKID é uma solução fechada, onde inclui módulo de seccionamento de entrada em média tensão, quadro de distribuição em baixa tensão, sistema interno de aterramento e transformador a seco com devido projeto de arrefecimento.

Outra característica importante é o ganho no tempo na montagem, pois os equipamentos saem de fábrica pré-montados.

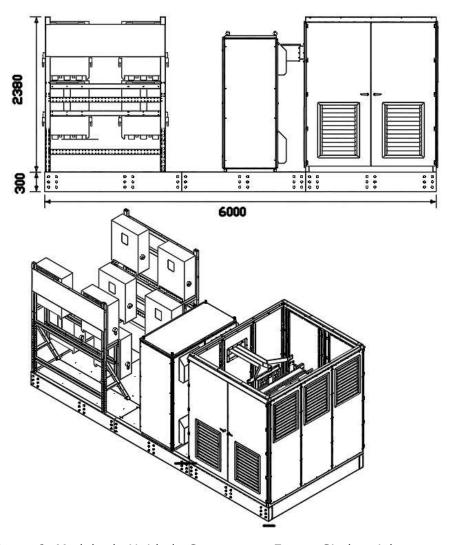


Figura 6: Modelo de Unidade Conversora. Fonte: Sindustrial

2.3 DIMENSIONAMENTO DA CABINE PRIMÁRIA

2.3.1 TOPOLOGIA ADOTADA

A interface entre o transformador elevador e a linha de transmissão é realizada pelo cubículo de média tensão. O cubículo é conectado ao transformador elevador por cabos isolados através de canaletas subterrâneas. Por outro lado, a interligação com a rede de distribuição CEMIG é feita por uma rede aérea, onde a potência é transmitida a uma tensão de 13,8 kV.

A Figura 7 mostra a topologia de cabine primária abrigada para geração distribuída solar fotovoltaica deste projeto. Como características principais, nota-se proteção e medição em média tensão. O emprego de religador trifásico no ponto de derivação da rede de MT da concessionária é demandado pela CEMIG, para esta faixa de potência. O disjuntor de proteção MT é passivo à gás SF6, cujos comandos de *trip* são provenientes de um relé de proteção.

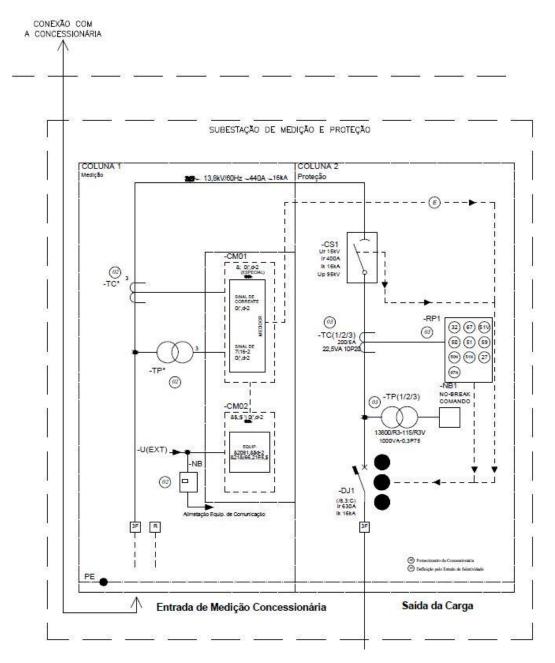
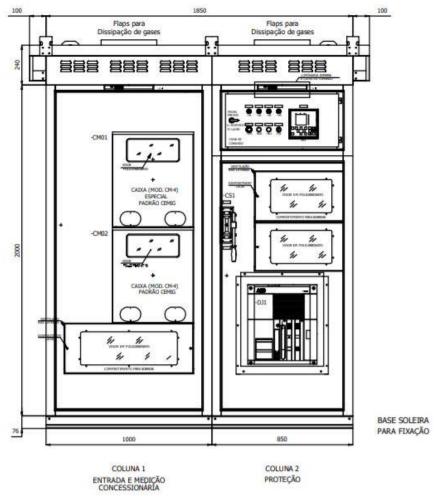


Figura 7:Topologia de subestação abrigada com potência instalada.

Os sinais de tensão e corrente lidos pelo relé são condicionados por meios de transformadores de corrente (TCs) e potencial (TPs). Exige-se três transformadores de corrente (um por fase) e três transformadores de potencial para implementação das proteções direcionais e de sincronismo. Fornecidos pela concessionária TCs e TPs para a medição que será tratado no item 2.3.4. Por fim, exige-se somente proteções direcionais de corrente e potência. Proteções de sincronismo estão embarcadas nos inversores.

2.3.2 CARACTERÍSTICAS CONSTRUTIVAS E ELÉTRICAS CABINE PRIMÁRIA


A Figura 8 mostra as dimensões projetadas para a cabine primária, entrada de fornecimento aéreo 13,8 kV.

O cubículo de proteção e medição possui largura de 1,85m e o comprimento de 1,55 metros.

A Figura 8 apresenta o dimensionamento dos equipamentos da subestação: tirante da bucha de passagem, barramento de vergalhão, cabos de MT de cobre, terminais de MT 15 kV, condutores de aterramento e base fusível da chave seccionadora do cubículo de transformação.

VISTA FRONTAL - DETALHES ANTE PORTA

Figura 8: Dimensões da cabine de média.

Tabela 13: Dimensionamento dos equipamentos da subestação.

Equipamento	Grandeza	Valor
Tirante da bucha de passagem	Diâmetro	1/2"
Barramento de Cobre MT	Diâmetro	40x5mm
Cabos MT cobre ponto de entrega à mufla da subestação (ramal de entrada)	Seção nominal	35 mm²
Terminais de MT 15 kV	Método de instalação	Enfaixado, sem saia
Condutores de aterramento cobre nu	Seção transversal	70 mm ²
Chave seccionadora tripolar 15kV	Corrente nominal	400 A

2.3.3 COMPONENTES DO SISTEMA DE PROTEÇÃO: DISJUNTOR, RELÉ SECUNDÁRIO, TRANSFORMADORES DE TENSÃO E CORRENTE

O transformador de corrente é projetado conforme ABNT NBR 6856. A Figura 9 mostra o esquemático do TC, com as impedâncias considerada nos cálculos: impedância do secundário do TC Z_{tc} , impedância do cabo Z_{cabo} e impedância do relé $Z_{rel\acute{e}}$. Os critérios de sensibilidade e saturação são levados em consideração no projeto do TC. Neste caso, o RTC = 200/5A e TC 22,5VA 10P20, classe de exatidão 10% e fator de multiplicidade de corrente nominal igual a 30 são utilizados para atender ambos os critérios. O detalhamento e valores dos cálculos são mostrados na Tabela 14.

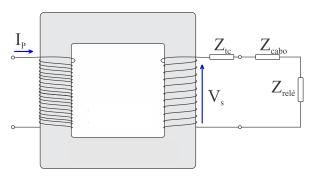


Figura 9 : Esquemático utilizado para dimensionamento do TC.

Conforme notado na Tabela 14, o critério de sensibilidade é satisfeito se a corrente de partida for superior a 10% da corrente primária dos TC de proteção para assegurar uma melhor exatidão na medição e monitoramento da instalação. O critério da saturação exige que o TC não sature sob a pior condição de curto-circuito primária vista pelo relé de proteção (falta trifásico de 3724 A). Este critério é atendido se $V_{s,tc} \leq V_{s,max}$, onde $V_{s,tc}$ é a tensão induzida no secundário do TC sob condições de falta trifásica e $V_{s,max}$ é a tensão máxima induzida no secundário sem levar o relé à saturação.

Tabela 14: Memorial de cálculo do transformador de corrente.

Descrição	Equação	Valores calculados
Corrente mínima para sensibilização do relé	$I_{pick-up,n}$	15 A
Corrente máxima para sensibilização do relé	$I_{cc,3f}$	3724 A
sem causar saturação		
Critério de sensibilidade: Corrente primária do	$I_{p,tc}$	$I_{p,tc} = 150A$
TC deve ser menor ou igual a $10 \times I_{pick-up,n}$	≤ 10	
1 17	$\times I_{pick-up,n}$	
Critério de saturação: tensão induzida no		$Z_{cabo} = 0.524\Omega$
secundário do TC $V_{s,tc}$ não deve saturar, isto é,		$Z_{rel\acute{ ext{e}}} = 0.02 \Omega$
deve ser menor que a máxima tensão secundária		$Z_{tc} = 0.162 + j0.0784 \Omega$
induzida do relé escolhido $V_{s,max}$. Escolha do TC	$V_{s,tc} \leq V_{s,max}$	RTC = 40
		$V_{s,max} = 66,1 \angle 6,34^{\circ} V$
22,5VA 10P20.		$V_{s,tc} = 90V$

Com relação ao dimensionamento dos TPs de proteção, a Tabela 15 resume as principais especificações do equipamento projetado.

Tabela 15 : Dimensionamento de TP de medição em 13,8 kV.

Parâmetro	Símbolo	Valor
Relação de transformação	RTV	70:1
Grupo (fase-terra)	-	2
Especificação	-	0,3P75
Tensão primária-	V_p : V_s	$13,8k/\sqrt{3}:115 V$
secundária		

No dimensionamento de TPs para proteção, deve-se atentar principalmente à potência nominal ou carga nominal do equipamento (para garantir a classe de exatidão). Por outro lado, para TPs de alimentação da proteção e/ou emergência, pode-se projetá-lo atendendo os critérios da potência térmica do transformador. As Tabelas 16 e 17 mostram as demandas da carga da subestação e da proteção, exigindo dois TPs com potência térmica de 1500 VA.

Tabela 16 : Quadro de carga da subestação para alimentação auxiliar.

Carga	Qtde.	Potência individual		Potência total		FD	FD Demanda		
		kW	FP	kVA	kW	kVA		kW	kVA
Lâmpada fluorescente 2x40W	4	0,08	0,85	0,09	0,32	0,38	1	0,32	0,38
Lâmpada emergência	2	0,1	0,85	0,12	0,2	0,24	0,25	0,05	0,06
Tomada	4	0,21	0,85	0,25	0,85	1	0,5	0,43	0,5
Demanda total em kVA							0,94		

Tabela 17: Quadro de carga da subestação para alimentação da proteção.

Carga	Qtde.		otênci dividu		Potê to	ncia tal	FD	Dem	anda
		kW	FP	kVA	kW	kVA		kW	kVA
Lâmpada disjuntor ON	1	0,003	0,85	0,003	0,003	0,003	0,5	0,001	0,002
Lâmpada disjuntor OFF	1	0,003	0,85	0,003	0,003	0,003	0,5	0,001	0,002
Lâmpada mola carregada	1	0,003	0,85	0,003	0,003	0,003	1	0,003	0,003
Motor carregamento mola	1	0,6	0,85	0,7	0,6	0,7	1	0,6	0,7
Bobinas de fechamento e abertura	2	0,085	0,85	0,1	0,17	0,2	1	0,17	0,2

Cargas no no-break	1	0,085	0,85	0,1	0,085	0,85	1	0,085	0,85
Carga relé	1	0,005	0,85	0,006	0,005	0,006	1	0,085	0,85
Demanda total em kVA 1						1,013			

Finalmente, as especificações do disjuntor de MT HD4/R 17 ABB fixo são mostradas na Tabela 18.

Tabela 18 : Especificação do disjuntor de MT.

Parâmetro	Valor
Tensão máxima de operação	17,5 kV
Tensão nominal de operação	13,8 kV
Corrente máxima de interrupção	16 kA
Tecnologia de interrupção	SF6
Corrente nominal	630 A
Vida útil (ciclos de manobra)	30.000
Tempo de fechamento	≤ 85 ms
Tempo de abertura	≤ 35 ms
Temsão nominal de impulso	95 kV
Massa	114 kg
Tensão nominal de alimentação auxiliar	110 Vca

2.3.4 COMPONENTES DO SISTEMA DE MEDIÇÃO

Transformadores de corrente de medição são utilizados para fins de medição das correntes em um sistema de média tensão. A concessionária quem instala estes dispositivos. Por questões óbvias financeiras, é exigido características de boa precisão (ex.: 0,3%-0,6% de erro de medição) e baixa corrente de saturação (4 vezes a corrente nominal). Obs.: Podem saturar durante a ocorrência do curto-circuito, não trazendo prejuízos financeiros à concessionária com relação a consumo de energia elétrica (já que a duração do curto é muito pequena). O dimensionamento do TC de medição pode ser feito em função do fator térmico e demanda da instalação conforme Tabela 19. Para a demanda de 1000 kVA, o transformador de corrente com fator térmico unitário de RTC igual a 100-5 atende as especificações de projeto.

Tabela 19: Dimensionamento de TCs de medição em 13,8 kV.

Transformador de corrente	Demanda		
primário-secundário	FT* = 1	FT* = 1,5	
5-5	Até 100 kVA	Até 100 kVA	
10-5	De 100 a 200 kVA	De 100 a 300 kVA	
15-5	De 150 a 300 kVA	De 150 a 400 kVA	
20-5	De 200 a 400 kVA	De 200 a 600 kVA	
25-5	De 250 a 500 kVA	De 250 a 750 kVA	
30-5	De 300 a 600 kVA	De 300 a 900 kVA	

40-5	De 400 a 800 kVA	De 400 a 1200 kVA
50-5	De 500 a 1000 kVA	De 500 a 1500 kVA
75-5	De 750 a 1500 kVA	De 750 a 2250 kVA
100-5	De 1000 a 2000 kVA	De 1000 a 3000 kVA
150-5	De 1500 a 3000 kVA	De 1500 a 4500 kVA
200-5	De 2000 a 4000 kVA	De 2000 a 6000 kVA
300-5	De 3000 a 6000 kVA	De 3000 a 9000 kVA
400-5	De 4000 a 8000 kVA	De 4000 a 12000 kVA
*Fator térmico nominal		

No dimensionamento de TPs para medição sob fornecimento de 13,8kV, considera-se a Tabela 20.

Tabela 20: Dimensionamento de TP de medição em 13,8 kV.

Relação de transformação	Medição
70:1	A três elementos

2.3.5 ATERRAMENTO DA SUBESTAÇÃO

O aterramento elétrico segue rigorosas normas de segurança por meio da NBR 5410, que aborda exigências necessárias para garantir o pleno funcionamento do sistema elétrico. Quando efetuado de maneira correta o aterramento evita correntes de fuga na superfície de equipamentos, auxilia nos dispositivos de proteção e principalmente protege a integridade física das pessoas.

A malha de aterramento do tipo quadrado cheio (conforme Figura 10) é utilizada, incluindo no mínimo todo o seu pátio e todos os equipamentos que pertencem à esta área. A malha de aterramento da subestação é composta por 12 eletrodos (hastes de aterramento+condutor), interligados por condutor de cobre nu, rígido, seção 70 mm².

A distância *l* entre as hastes é igual ao comprimento dos eletrodos utilizados (2,4m), conforme Figura 10. As partes metálicas da subestação, tais como carcaças de transformadores, pára-raios, equipamentos, portas, janelas, painel de tela zincado e suportes metálicos, deverão ser ligados diretamente à malha de aterramento através de condutores de cobre nu, rígido, com bitola de 25 mm² e através de solda exotérmica.

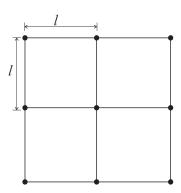


Figura 10: Malha de aterramento tipo quadrado cheio.

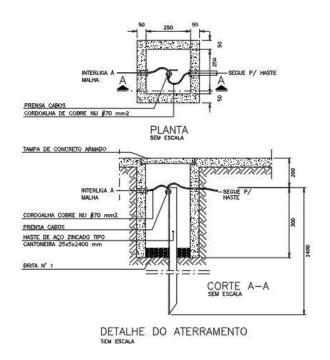


Figura 11 : Detalhes da haste de aterramento e interligação.

Por fim, são ser previstos "rabichos" de 500 mm em vários pontos para prover o aterramento de carcaças de equipamentos, ferragens, telas e como reserva para eventual necessidade de novos pontos de aterramento.

2.4 ESTUDOS DE PROTEÇÃO

2.4.1 CÁLCULO DAS CORRENTES DE CURTO-CIRCUITO

Os valores base utilizados para os cálculos de curto-circuito estão apresentados na Tabela 21.

Tabela 21: Valores base utilizados nos estudos de proteção.

Grandezas	Símbolo	Valor
Potência aparente de base	S_b	100 MVA
Tensão primária de base	V_b	13,8 kV

Baseado na Tabela 21, a corrente de base (sistema pu) é definida como:

$$I_b = \frac{S_b}{\sqrt{3}V_b} = \frac{100 \text{ MVA}}{\sqrt{3} 13.8 \text{ kV}} = 4183.7 \text{ A}.$$
 (1)

Os dados de nível de curto-circuito e impedância de sequência equivalente da subestação CEMIG Pirapora foram fornecidos, através do parecer de acesso, conforme mostrado na Tabela 22.

Tabela 22 : Impedância e correntes de curto-circuito fase-fase, fase-terra e trifásica na barra da SE CEMIG Pirapora.

Corrente de curto- circuito	Sequência + [A]	Sequência - [A]	Sequência 0 [A]
Falta fase-fase (L-L)	1866∠ – 144,8°	1866∠35,2°	0∠0°
Falta fase-terra (L-G)	1371,1∠ – 146,2°	1371,1∠ – 146,2°	1371,1∠ – 146,2°
Falta fase-fase-terra (2L- G)	2624,9∠ – 145,7°	1104,9∠37,3°	1522,6∠32,1°
Falta trifásica (3L)	3724,1∠ − 144,8°	0∠0°	0∠0°
Impedância	Sequência + $[\Omega]$	Sequência – $[\Omega]$	Sequência $O[\Omega]$
equivalente da barra da SE Pirapora	$Z_{\text{eq}}^+ = 0.18758 + j2,04182$	$Z_{\text{eq}}^- = 0.18454 + j2,03343$	$Z_{\rm eq}^0 = 0 + j1,48164$

As informações da rede aérea de distribuição protegida (RDP) trifásica de 13,8 kV foram fornecidas no parecer de acesso estão mostrados na Figura 10. Os cabos de alumínio são cobertos de isolação XLPE 90°C 15 kV, apoiados em cruzetas com cabo mensageiro de sustentação mecânica.

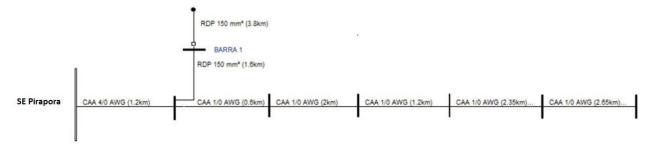


Figura 12 : Rede de Distribuição SE Pirapora.

Para os cálculos de curto-circuito, a resistência e reatância de sequências dos cabos de alumínio das redes de distribuição compactas da concessionária são modeladas conforme Tabela 23.

Tabela 23 : Dados de impedância de sequência dos cabos da rede RDP da SE CEMIG Pirapora até a barra de conexão do acessante. *Valores obtidos para uma temperatura de 90 °C.

Seção [mm²]	Sequência zero* - Z ⁰	Sequência pos. e neg.* - $Z^+ = Z^-$			
150	0,8236 + j1,9447 Ω/km	$0,264 + j0,2417 \Omega/km$			
OBS.:	OBS.: Temperatura ambiente considerada de 30°C				

As impedâncias de sequência dos cabos de cobre da instalação do acessante, utilizadas no cálculo de curto-circuito, são mostradas na Tabela 24.

Tabela 24: Dados de impedância de sequência dos cabos de cobre utilizados na rede interna do acessante. *Valores obtidos para uma temperatura de 90 °C.

Seção [mm²]	Sequência zero* - Z ⁰	Sequência pos. e neg.* - $Z^+ = Z^-$
35	$0,677 + j0,1838 \Omega/km$	$2,54 + j1,76 \Omega/km$
OBS.:	Temperatura ambiente cons	siderada de 30°C.

Os níveis de curto-circuito foram determinados em todas as barras, onde é requerido a instalação de equipamentos ou dispositivos de proteção. Para definição de alguns parâmetros da proteção, é necessário definir as características do transformador de potência instalado, cujas informações estão apresentadas na Tabela 25.

Tabela 25 : Características elétricas do transformador a seco.

Característica dos transformadores	Valor
Potência aparente [kVA]	1000
Tensão primária [V]	13800
Tensão secundária [V]	600
Impedância [%]	6,0 %
Classe material isolante	SECO
Grupo de ligação	Ynd11
Frequência [Hz]	60
X/R	4,14

A Figura 13 mostra a tabela resumo das contribuições da CEMIG e da usina solar fotovoltaica (UFV) para as correntes de CC nas diversas barras. O diagrama de impedâncias é mostrado na Figura 13 para consulta.

Contribuição concessionária:

BARRAS DO SISTEMA	Icc 3F [A]	Icc FT [A]
B2	3885,76	4279,62
В3	595,82	795,42
B4	595,27	792,63
B5	594,55	788,91
В6	9460,22	12178,93
В7	9223,83	9808,69

Contribuição acessante:

BARRAS DO SISTEMA	Icc 3F [A]	Icc FT [A]
B2	40,56	44,68
В3	42,88	57,10
B4	42,88	56,43
B5	42,88	56,90
В6	1018,39	1311,06
B7	1020,41	1085,11

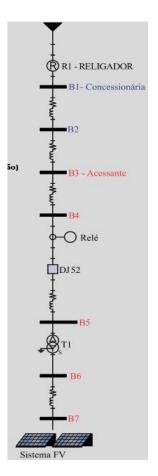


Figura 13 : Resumo das contribuições da concessionária e da usina solar fotovoltaica (UFV) para as correntes de CC nas diversas barras.

Nos cálculos de curto-circuito apresentados na Figura 13, as seguintes premissas foram adotadas:

- As impedâncias de sequência foram obtidas através das Tabelas 23 e 24. A impedância do transformador foi obtida conforme Tabela 25. A Tabela 26 mostra as impedâncias equivalentes de sequência positiva e zero do sistema, referenciadas à Tabela 26;
- Assume-se que a corrente de curto-circuito dos geradores conectados via inversor é de 2 vezes o valor da corrente nominal do inversor;
- Testes em inversores trifásicos comerciais mostraram que a corrente pode atingir até duas vezes a corrente nominal por até 10 ciclos.

Referência na Erro! Fonte de r eferência não encontrada.	Comprimento [km]	Impedância eq. de sequência positiva $[\Omega]$	Impedância eq. sequência zero $[\Omega]$
Impedância B2/B3	5,4	4,44 + j 10,50	1,42 + j1,30
Impedância B3/B4	0,03	0,0203 + j0,0055	0,076 + j0,053
Impedância B4/B5	0,04	0,0271 + j0,0073	0,1017 + j0,0706
Impedância B6/B7	0,05	0,00094 + j0,00067	0,012 + j0,015

Tabela 26 : Impedâncias equivalentes de sequência positiva e zero do sistema.

Portanto, de acordo com estas informações, os estudos de curto-circuito consideram a contribuição de corrente de uma UFV limitada em 2 pu com duração de até 10 ciclos (167 ms). Além disso, a corrente nominal da UFV para um fator de potência de 0,92 é de 510 A.

2.4.2 PARAMETRIZAÇÃO DAS FUNÇÕES DE PROTEÇÃO

A Tabela 27 apresenta as características das curvas de proteção de fase e neutro do religador para coordenação com a proteção do acessante.

T 1 07 A: 1	1. 1	. ~ ~	
Labola III Nilictor do ro	liaadar nara coord	lonacao tornocida	c nota concoccionaria
Tabela 27: Ajustes do re	Huauul Dala Coolu	lenacao, fornecida:	o nela concessionana.

Ajuste de fase		Ajuste de neutro	
Pick-up	300 A	Pick-up	60 A
Curva	IEC VI (Muito	Curva	TD (Tempo definido)
	inverso)		
Dial	0,1	Tempo	9 s
T.	-	T. adicional	-
adicional			

A Tabela 28 apresenta a configuração para conexão do gerador fotovoltaico com potência nominal de 1000kW, instalados em consumidores atendidos através de subestação de entrada abrigada. As funções de proteção exigidas pela ND 5.31 para este acessante são:

- Função 32(1) e (2) Direcional de potência (atuação quando a injeção de potência ultrapassa 105% da potência nominal da UFV por 15s; atuação quando a absorção de potência ultrapassa 105% da potência demandada da instalação por 15s);
- Funções 67(1) e (2), 67N(1) e (2) Direcional de corrente de fase e neutro.

Além disso, as proteções serão parametrizadas no relé de proteção ABB REG615, instalado em cubículo de proteção abrigado. A Tabela 28 apresenta um resumo das proteções implementadas no relé ABB REG615 e suas respectivas parametrizações/ajustes conforme norma CEMIG ND5.31. Conforme mostrado anteriormente, três TPs, conectados em estrela $13.800/\sqrt{3}$ - 115V (70:1) e três TCs 150:5A são utilizados para adequar os sinais primários aos níveis requeridos pelo relé.

Tabela 28 : Definição das proteções e suas respectivas parametrizações de acordo com a norma CEMIG ND5.31.

Código ANSI	Descrição	Parâmetro	Ajuste	Referência
22 (1)	Direcional de Potência	Potência Ativa	1050 kW	Página ND 5.31
32 (1)	(Sentido CEMIG)	Tempo	15 s	(170/171)
32 (2)	Direcional de potência	Potência Ativa	1050 kW	Página ND 5.31
32 (2)	(sentido acessante)	Tempo	15 s	(172/173)
		Pickup (A)	48	
		Curva	EI	
	Direcional de	Dial	0,2	
67 (1)	sobrecorrente de fase (sentido conc.)	Tempo Adicional	-	Página ND 5.31 (172/173)
	(Sericido Coric.)	Instantâneo	-	(1/2/1/3)
		Ângulo	45°	
		Pickup (A)	48 A	
		Curva	EI	
		Dial	0,1s	
	Direcional de	Instantâneo	352A	_
67 (2)	sobrecorrente de fase (sentido acessante)	Tempo Adicional	-	Página ND 5.31 (172/173)
		Ângulo	45°	
		Pickup (A)	15 A	
		Curva	Tempo definido	
		Dial	6s	
67N (1)	Sobrecorrente de neutro	Tempo Adicional	-	Página ND 5.31 (175)
		Instantâneo	-	
		Ângulo	110°]
67N (2)		Pickup (A)	15 A	

	Direcional de	Curva	Tempo	
	Sobrecorrente de	34.14	definido	Página ND 5.31
	neutro	Dial	0,3s	(175)
		Tempo	-	, ,
		Adicional		
		Instantâneo	-	
		Ângulo	110°	
		Curva	EI	
		Dial	0,2	
		Tempo	_	
		Adicional		
		Instantâneo	105,6A	
		Ângulo	-	
		Pickup (A)	47,75 A	
		Curva	Tempo definido	
		Dial	0,1	
		Limite de Tensão Máx.	13,8 kV	
51V	Sobrecorrente com	Percentual Tensão Máx.	100%	Página ND 5.31 (170)
J1V	restrição de tensão	Limite de Tesnão Mín.	11,18kV	
		Percentual tensão Mín.	81%	
		Tempo Adicional	0	

2.4.3 ESTUDO DE SELETIVIDADE E COORDENAÇÃO

A Figura 14, mostra o coordenograma em papel formatado bi-log tempo × corrente, onde se pode verificar a coordenação e seletividade da proteção dimensionada para qualquer valor de corrente. As correntes estão referidas ao primário. Além disso, os seguintes pontos de operação podem ser encontrados nos gráficos:

- Correntes de curto-circuito trifásico ($I_{cc,3f}$) e fase-terra ($I_{cc,ft}$) fornecidos pela CEMIG;
- Corrente de magnetização dos transformadores (I_{mag});
- Curva temporizada IEC muito inversa de fase, do religador;
- Curva temporizada IEC extremamente inversa de fase 67(1), sem unidade instantânea, do relé ABB REG615;
- Curva temporizada IEC extremamente inversa de fase 67(2), com unidade instantânea, do relé ABB REG615;
- Curva tempo definido de neutro 67N(1), sem unidade instantânea, do relé ABB REG615;

• Curva tempo definido de neutro 67N(1), com unidade instantânea, do relé ABB REG615.

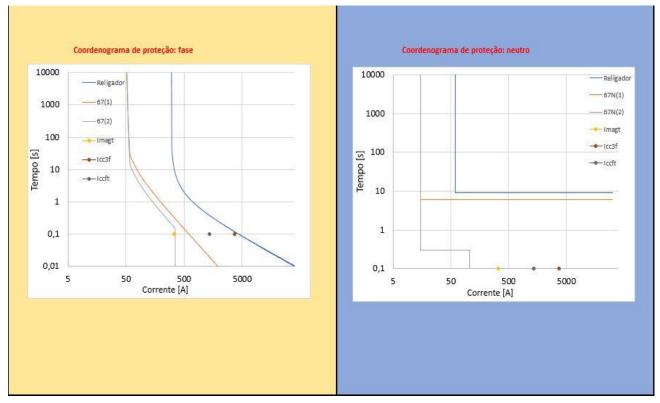


Figura 14 : Coordenograma das proteções 67(1), 67(2), 67N(1) e 67N(2).

3- Análise de Viabilidade Econômica

Neste capítulo serão apresentados todos os estudos econômicos realizados para a verificação da viabilidade da usina fotovoltaica de 1 MWp. Antes de efetuar qualquer tipo de investimento é necessário analisar se existe a viabilidade financeira do projeto. A primeira análise a ser feita é o levantamento dos custos de investimento de cada etapa do projeto. Por meio dos custos dos equipamentos, terreno, projeto, mão-de-obra, reforço de rede e impostos é possível calcular através o retorno do investimento através dos créditos gerados.

3.1 ANÁLISE DE TÉCNICA E ECONÔMICA DE INVESTIMENTOS

Para o cálculo do investimento em bens de capital (CAPEX), foi realizado levantamento de preços por meio de consulta a fornecedores de diversos itens que compõe o projeto, todos equipamentos da usina e interligação com à rede CEMIG, como mostrado na Tabela 29.

Tabela 29: Cálculo do CAPEX.

ITEM		TOTAL
1-ENGENHARIA DE DESENVOLVIMENTO	R\$	965.000,00
1.1- ANÁLISE DO SOLO/TERRAPLANAGEM	R\$	10.000,00
1.2- ANÁLISE AMBIENTAL	R\$	5.000,00
1.4-Engenharia do Proprietário(EPC)	R\$	950.000,00
2-PRINCIPAIS EQUIPAMENTOS	R\$	3.161.579,92
2.1-MÓDULOS FOTOVOLTAICO	R\$	2.880.000,00
2.2-INVERSOR	R\$	281.579,92
4-OUTROS EQUIPAMENTOS	R\$	1.831.122,28
4.1-CUBÍCULO MT/UNIDADE CONVERSORA	R\$	362.000,00
4.2-TRANSFORMADOR 1000kVA	R\$	525.000,00
4.3-COMBINER BOX	R\$	42.800,00
4.4-ESTRUTURA FIXAÇÃO	R\$	721.322,28
4.5-CABEAMENTO, CONECTORES E ETC	R\$	180.000,00
5-OUTROS SERVIÇOS	R\$	275.000,00
5.1-COMISSIONAMENTO	R\$	25.000,00
5.3-LOGÍSTICA	R\$	250.000,00
7-OUTROS	R\$	85.000,00
7.1-DIVERSAS	R\$	85.000,00
TOTAL	R\$	6.317.702,20

Com relação a estimativa de OPEX, que está relacionado aos valores de despesas operacionais necessárias para manter a usina em funcionamento, utiliza-se uma expectativa de 25 anos levando em consideração o reajuste

monetário (IPCA), custo para arrendamento da terra, operação e manutenção (O&M), custo com seguranças e outras demandas.

Foi considerado um custo no primeiro ano de 7% do investimento inicial, e contará com reajuste de 2% a.a. Levando em consideração o índice de preço ao consumidor (IPCA) igual a 10,06% a.a, é possível analisar o tempo de retorno do investimento (Payback descontado). Aplicando uma Taxa Mínima de Atratividade (TMA) de 8% a.a, é possível quantificar o Valor Presente Líquido (VPL) do investimento, com valores futuros cotados como valores atuais. Todas essas premissas estão destacadas na Tabela 30.

DADOS GERAIS			
Irradiação solar (kWh/m²/ano)	2.135.046,06		
Perdas	20%		
Potência do sistema (MWp)	1		
Valor do Investimento	6.317.702,20		
Valor kWh CEMIG(R\$/kWh)	0,707		
Produção Média (kWh/mês)	100000,00		
Manutenção	7%		
Redução potência	1%		
IPCA	10,06%a.a		
TMA	8%a.a		
Queda de Eficiência dos Módulos	1%a.a		

Tabela 30: Dados utilizados. Fonte: Autor.

O valor da energia a ser comercializado será R\$0,707. Como a usina está localizada no estado de Minas Gerais, há a isenção ICMS na modalidade de Geração Compartilhada.

3.2 PAYBACK

Payback é um índice financeiro que retorna o tempo de retorno do investimento inicial até o momento em que o ganho acumulado durante os anos se iguale com o valor investido. Como indicado na Tabela 31, a implantação do sistema fotovoltaico de 1 MWp na instituição, já traria retorno financeiro no decorrer do oitavo ano.

Tabela 31 : Fluxo de caixa. Fonte: Autor.

Ano	Produção kWh/ano	Valor Energia R\$/kWh	Receita Bruta R\$/Ano	Manutenção	Troca dos Inversores	Fluxo de Caixa	Fluxo Descontado	PayBack Descontado
0								-R\$ 6.317.702,2
1	2.135.046,6	0,71	R\$ 1.509.478	-442.239,2	-	R\$ 1.067.238,8	R\$ 969.688	-R\$ 5.348.014,0
2	2.113.696,2	0,74	R\$ 1.569.102	-451.083,9	-	R\$ 1.118.018,4	R\$ 922.975	-R\$ 4.425.039,0
3	2.092.559,2	0,78	R\$ 1.631.082	-460.105,6	-	R\$ 1.170.976,3	R\$ 878.334	-R\$ 3.546.705,2
4	2.071.633,6	0,82	R\$ 1.695.510	-469.307,7	-	R\$ 1.226.201,9	R\$ 835.688	-R\$ 2.711.017,7
5	2.050.917,3	0,86	R\$ 1.762.482	-478.693,9	-	R\$ 1.283.788,4	R\$ 794.961	-R\$ 1.916.056,5
6	2.030.408,1	0,90	R\$ 1.832.100	-488.267,8	-	R\$ 1.343.832,6	R\$ 756.081	-R\$ 1.159.975,9
7	2.010.104,0	0,95	R\$ 1.904.468	-498.033,1	-	R\$ 1.406.435,2	R\$ 718.974	-R\$ 441.001,9
8	1.990.003,0	0,99	R\$ 1.979.695	-507.993,8	-	R\$ 1.471.701,0	R\$ 683.571	R\$ 242.568,9
9	1.970.103,0	1,04	R\$ 2.057.893	-518.153,7	-	R\$ 1.539.739,1	R\$ 649.803	R\$ 892.371,6
10	1.950.401,9	1,10	R\$ 2.139.179	-528.516,7	-R\$ 281.579,92	R\$ 1.329.082,8	R\$ 509.632	R\$ 1.402.004,0
11	1.930.897,9	1,15	R\$ 2.223.677	-539.087,1	-	R\$ 1.684.590,0	R\$ 586.907	R\$ 1.988.911,4
12	1.911.588,9	1,21	R\$ 2.311.512	-549.868,8	-	R\$ 1.761.643,5	R\$ 557.653	R\$ 2.546.564,3
13	1.892.473,0	1,27	R\$ 2.402.817	-560.866,2	-	R\$ 1.841.950,9	R\$ 529.779	R\$ 3.076.342,9
14	1.873.548,3	1,33	R\$ 2.497.728	-572.083,5	-	R\$ 1.925.644,8	R\$ 503.226	R\$ 3.579.568,9
15	1.854.812,8	1,40	R\$ 2.596.389	-583.525,2	-	R\$ 2.012.863,4	R\$ 477.938	R\$ 4.057.507,0
16	1.836.264,7	1,47	R\$ 2.698.946	-595.195,7	-	R\$ 2.103.750,3	R\$ 453.860	R\$ 4.511.367,2
17	1.817.902,1	1,54	R\$ 2.805.554	-607.099,6	-	R\$ 2.198.454,7	R\$ 430.939	R\$ 4.942.306,2
18	1.799.723,0	1,62	R\$ 2.916.374	-619.241,6	-	R\$ 2.297.132,1	R\$ 409.124	R\$ 5.351.430,1
19	1.781.725,8	1,70	R\$ 3.031.570	-631.626,4	-	R\$ 2.399.944,1	R\$ 388.365	R\$ 5.739.795,5
20	1.763.908,5	1,79	R\$ 3.151.317	-644.258,9	-R\$ 281.579,92	R\$ 2.225.478,6	R\$ 327.215	R\$ 6.067.010,5
21	1.746.269,5	1,88	R\$ 3.275.795	-657.144,1	-	R\$ 2.618.650,4	R\$ 349.831	R\$ 6.416.841,1
22	1.728.806,8	1,97	R\$ 3.405.188	-670.287,0	-	R\$ 2.734.901,4	R\$ 331.965	R\$ 6.748.806,3
23	1.711.518,7	2,07	R\$ 3.539.693	-683.692,7	-	R\$ 2.856.000,6	R\$ 314.978	R\$ 7.063.783,8
24	1.694.403,5	2,17	R\$ 3.679.511	-697.366,6	-	R\$ 2.982.144,7	R\$ 298.827	R\$ 7.362.611,3
25	1.677.459,5	2,28	R\$ 3.824.852	-711.313,9	-	R\$ 3.113.538,0	R\$ 283.476	R\$ 7.646.087,4

3.3 VALOR PRESENTE LÍQUIDO

O Valor Presente Líquido é um índice financeiro que traz para a data atual todos os fluxos de caixa e soma ao valor de investimento, usando como taxa de desconto TMA, já definida. Como indicado na Tabela 32, a implantação do sistema fotovoltaico de 1 MWp na instituição, já traria retorno financeiro no decorrer do sétimo ano.

Tabela 32 : Fluxo de caixa. Fonte: Autor.

Ano	FLUXO DE CAIXA	VPL D	escontado	Fluxo de Caixa Projeto
0				-R\$ 6.317.702,2
1	R\$ 1.067.238,8	R\$	988.184	-R\$ 5.329.518,1
2	R\$ 1.118.018,4	R\$	958.521	-R\$ 4.370.997,5
3	R\$ 1.170.976,3	R\$	929.559	-R\$ 3.441.438,8
4	R\$ 1.226.201,9	R\$	901.295	-R\$ 2.540.143,8
5	R\$ 1.283.788,4	R\$	873.725	-R\$ 1.666.419,0
6	R\$ 1.343.832,6	R\$	846.842	-R\$ 819.576,5
7	R\$ 1.406.435,2	R\$	820.641	R\$ 1.064,9
8	R\$ 1.471.701,0	R\$	795.114	R\$ 796.179,1
9	R\$ 1.539.739,1	R\$	770.253	R\$ 1.566.432,0
10	R\$ 1.329.082,8	R\$	615.623	R\$ 2.182.054,5
11	R\$ 1.684.590,0	R\$	722.492	R\$ 2.904.546,3
12	R\$ 1.761.643,5	R\$	699.573	R\$ 3.604.119,2
13	R\$ 1.841.950,9	R\$	677.282	R\$ 4.281.400,7
14	R\$ 1.925.644,8	R\$	655.607	R\$ 4.937.007,7
15	R\$ 2.012.863,4	R\$	634.538	R\$ 5.571.546,2
16	R\$ 2.103.750,3	R\$	614.065	R\$ 6.185.610,9
17	R\$ 2.198.454,7	R\$	594.174	R\$ 6.779.784,9
18	R\$ 2.297.132,1	R\$	574.855	R\$ 7.354.640,0
19	R\$ 2.399.944,1	R\$	556.096	R\$ 7.910.736,0
20	R\$ 2.225.478,6	R\$	477.472	R\$ 8.388.208,5
21	R\$ 2.618.650,4	R\$	520.210	R\$ 8.908.418,4
22	R\$ 2.734.901,4	R\$	503.059	R\$ 9.411.477,6
23	R\$ 2.856.000,6	R\$	486.421	R\$ 9.897.898,1
24	R\$ 2.982.144,7	R\$	470.282	R\$ 10.368.180,4
25	R\$ 3.113.538,0	R\$	454.632	R\$ 10.822.812,7

3.4 ANÁLISE DA VIABILIDADE

A Tabela 33 apresenta as análises de viabilidade estudadas para o presente projeto. Apesar do elevado investimento, a taxa interna de retorno (TIR) de 21% e *pay-back* descontado de 08 anos mostram um empreendimento atrativo e viável do ponto de vista financeiro.

Tabela 33: Análise de viabilidade do projeto.

VPL	R\$ 10.822.812,7 21%	
TIR		
PAYBACK DESCONTADO	08 anos	

4- Projeto Elétrico

Este capítulo tem objetivo de apresentar o sistema elétrico desenvolvido durante capítulos anteriores, mostrando as ligações dos componentes.

Com o objetivo de simplificar e generalizar o entendimento dos projetos elétricos fotovoltaicos, símbolos gráficos são utilizados para representar os diversos componentes destes sistemas. Toda planta elétrica deve conter: margem, conforme norma; etiqueta com todas as identificações do proprietário e informações básicas; legenda com a simbologia e especificação técnica; esquema unifilar ou multifilar, quando aplicável; detalhes de montagem, quando necessário; e especificação dos componentes elétricos

4.1 PROJETO ELÉTRICO: DIAGRAMA UNIFILAR

A Figura 15 apresenta o diagrama unifilar da instalação elétrica trifásico (3F+N) com tensão fase-fase (ou de linha) de 13,8 kV eficaz. Uma usina solar fotovoltaica é conectada à esta UC, de onde as seguintes características elétricas do sistema podem ser enumeradas:

- ✓ Disjuntor trifásico CA de 630 A do padrão de entrada;
- ✓ Carga instalada existente na unidade consumidora de 1000 kW;
- ✓ Condutores CA fase de bitola 35 mm² isolação XLPE 500 V, no padrão de entrada;
 - ✓ Medidor de energia bidirecional;
- ✓ Dispositivo de proteção contra surtos de 175 V (fase-terra), classe 2, corrente nominal (corrente projetada, na qual é capaz de desviar para o aterramento de proteção) de 20 kA;
- ✓ Condutores CA fase de bitola 70 mm², isolação XLPE 1kV (conecta a saída CA do inversor ao quadro geral da instalação);
 - ✓ Disjuntor CA de 1600 A no lado CA no QGBT;
- ✓ Condutores CC polos positivo e negativo de bitola 150 mm², isolação XLPE 1,8 kV (conecta o arranjo FV à entrada CC do inversor);
- ✓ Dispositivo de seccionamento CC de 315 A, tensão máxima de 1500 V de isolação no lado CC da string box;
- ✓ Dispositivo de proteção contra surtos CC de 1500 V, classe 2, corrente nominal (corrente projetada, na qual é capaz de desviar para o aterramento de proteção) de 20 kA;
- ✓ Inversor FV 125 kW CA, 600V CA, e faixa de operação CC 860-1450V, com 1 MPPTs;

✓ Módulos fotovoltaicos 540 Wp dispostos em 10 strings de 30 módulos FV cada, totalizando 1,29 MWp de potência cc instalada.

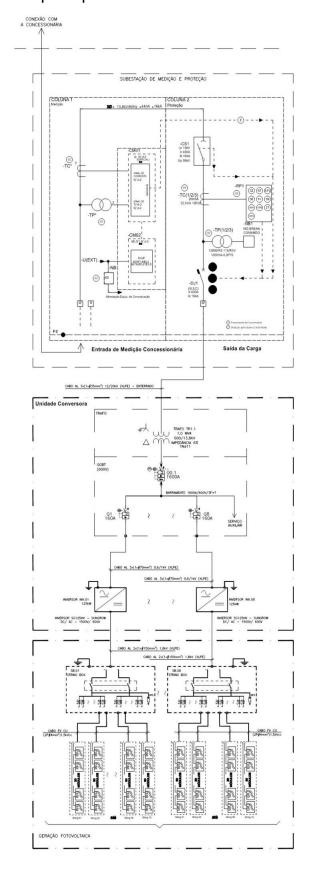


Figura 15: Diagrama unifilar da usina solar fotovoltaica.

Para uma melhor visualização foi dividido em parte o diagrama unifilar, conforme Figuras 16, 17 e 18.

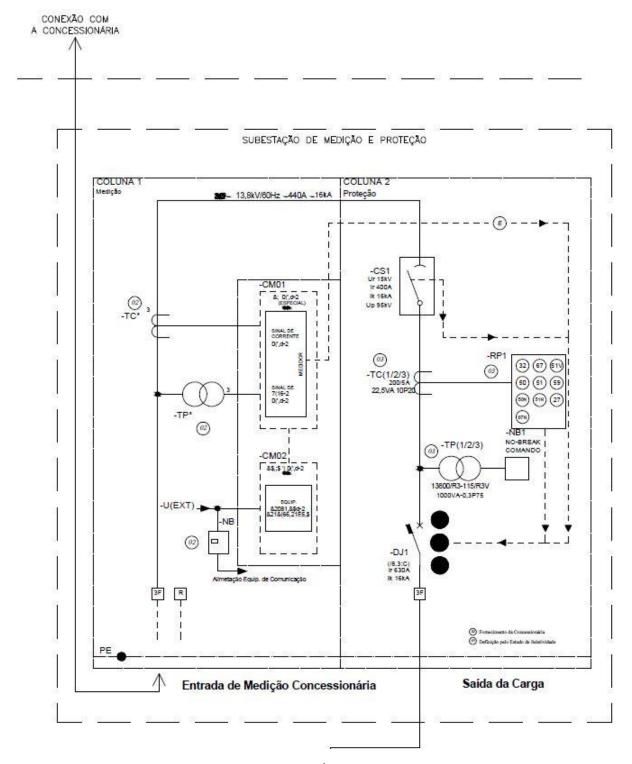


Figura 16: Diagrama unifilar cubículo de MT. Fonte: Autor.

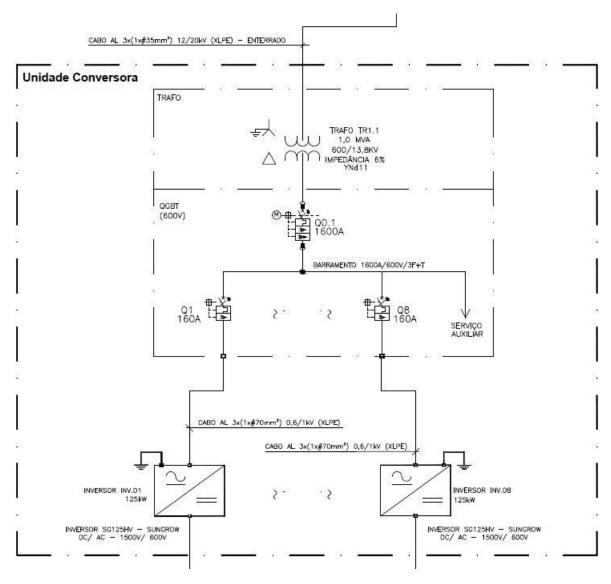


Figura 17: Diagrama unifilar unidade conversora (SKID).Fonte:Autor.

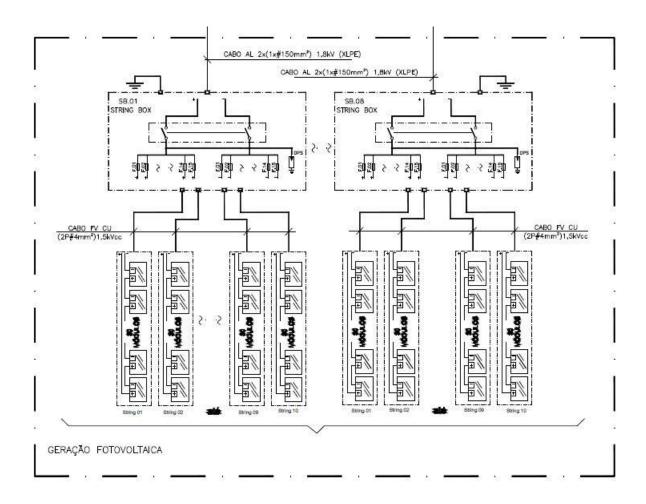


Figura 18: Diagrama unifilar geradores fotovoltaicos. Fonte: Autor.

4.2 MEMORIAL DESCRITIVO

O memorial descritivo é um documento elaborado antes de efetuar a instalação da usina solar fotovoltaica, na qual as informações do projeto devem estar descritas de forma detalhada e aprofundada. O objetivo, portanto, consiste em descrever os componentes presentes no sistema de microgeração ou minigeração de energia solar fotovoltaica em uma unidade consumidora de pessoa física. Os seguintes itens devem ser abordados neste documento:

- ✓ Dados do projetista, devidamente registrado no Conselho Federal de Engenharia e Agronomia (CREA), e da empresa responsável pelo projeto (se aplicável);
- ✓ Dados do titular da unidade consumidora e localização da UC (coordenadas geográficas, número da instalação, classe e característica de atendimento). O tipo de atividade desenvolvido na UC também é exigido, isto é, se é uma residência, escritório, escola, comércio, zona rural ou industrial, granja ou outra atividade econômica. O histórico ou média anual de consumo da UC pode ser anexado, em kWh/mês;

- ✓ Se o cliente enquadrar no fornecimento de MT, a demanda contratada e forma de atendimento devem ser anexadas;
- ✓ Descrição detalhada técnica dos módulos fotovoltaicos, inversores, estruturas de fixação, dispositivo de proteção, aterramento e outros componentes pertinentes;
 - ✔ Previsão da produção energética da usina solar fotovoltaica anual;
- ✓ Anexos: folha de dados dos módulos fotovoltaicos, inversores, certificação de conformidade do inversor, formulário de solicitação de acesso, projeto elétrico e ART.

5- Conclusão

Por meio deste projeto, realizou-se todo o dimensionamento e o processo de análise de viabilidade econômico-financeira para a implantação de uma usina fotovoltaica de 1 MWp no município de Pirapora/MG.

O projeto em questão mostra a viabilidade econômica da implantação da usina solar fotovoltaica no sistema de compensação (créditos de energia) e no formato de geração compartilhada de consumidores.

O resultado nos demonstrou ser uma alternativa de investimento viável, com uma taxa interna de retorno de 21% a.a. e pay-back descontado de 8 anos, justificando o elevado investimento inicial com um rápido retorno.

6- Referências Bibliográficas

- [1] Greener, "ESTUDO ESTRATÉGICO MERCADO FOTOVOLTAICO DE GERAÇÃO DISTRIBUÍDA," 2019.
- [2] ANEEL, [Online]. Available: https://www.aneel.gov.br/prodist.
- [3] SistemaOCB, "Formação de Cooperativas de Geração Distribuida," 2017. [Online]. Available: http://www.cbgd.com.br/2017/AUDA2610/Marco%20Morato%20%20OCB.pdf. [Acesso em 09 12 2018].
- [4] CEMIG. [Online]. Available: http://www.cemig.com.br/pt-br/atendimento/corporativo/Paginas/manual-solicitacao-acesso.aspx. [Acesso em 05 09 2018].
- [5] Wlademir, "WR| Prates," 2016. [Online]. Available: https://www.wrprates.com/o-que-e-vpl-valor-presente-liquido/#Formula_do_VPL. [Acesso em 02 09 2018].
- [6] J. Mamede, Instalações Elétricas Industriais, 8ª ed., São Paulo: LTC, 2010.
- [7] ANEEL, "http://www2.aneel.gov.br/cedoc/ren2015687.pdf," [Online]. Available: https://www.aneel.gov.br/a-aneel.
- [8] B. M. Hickel, E. M. Deschamps, L. R. Nascimento, R. Ruther e G. C. Simões, "ANÁLISE DA INFLUÊNCIA DO ACÚMULO DE SUJEIRA SOBRE DIFERENTES TECNOLOGIAS DE MÓDULOS FV: REVISÃO E MEDIÇÕES DE CAMPO," Congresso Brasileiro de Energia Solar, nº VI Congresso Brasileiro de Energia Solar, 2016.
- [9] M. G. Villalva e J. R. Gazoli, Energia SolarFotovoltaica Conceitos e Aplicações Sistemas Isolados e Conectados à Rede., São Paulo: Érica, 2012.
- [10] "HiKu_CS3W-MS_(1000V & 1500V)_EN Canadian Solar," Canadian Solar Inc, [Online]. Available: www.canadiansolar.com. [Acesso em 14 01 2021].
- [11] J. T. Pinho e M. A. Galdino, Manual de Engenharia Para Sistema Fotovoltaicos, Rio de Janeiro: Eletrobras, 2014.
- [12] Sungrow, "SG125HV," [Online]. Available: https://br.sungrowpower.com/. [Acesso em 14 01 2021].
- [13] "Conector MC4," Neosolar Energia, [Online]. Available: http://www.neosolar.com.br/apren- da/saiba-mais/conector-mc4>. [Acesso em 16 01 2022].
- [14] G. -. UFV, "ESTIMATE". Viçosa/MG.
- [15] Sindustrial SKID, Sindustrial, [Online]. Available: https://galienergia.com.br/solucoes-fotovoltaicas. [Acesso em 16 01 2022].

7- Anexos

SG125HV String Inverter for 1500 Vdc System

High Yield

- Patent five-level topology, max. efficiency 98.9 %, European efficiency 98.7 %, CEC efficiency 98.5 %
- Full power operation without derating at 50 °C

Easy 0&M

Virtual central solution, easy for O&M
 Compact design and light weight for easy installation

Saved Investment

- DC 1500 V, AC 600 V, low system initial investment
- 1 to 5 MW power block design for lower MV transformer and labor cost
- · Max. DC/AC ratio up to 1.5

Grid Support

- Compliance with both IEC and UL safety, EMC and grid support regulations
- · Low/High voltage ride through (L/HVRT)
- Active & reactive power control and power ramp rate control

Circuit Diagram

Efficiency Curv

SG125HV

Input (DC)	SG125HV	
Max. PV input voltage	1500 V	
Min. PV input voltage / Startup input voltage	860 V / 920 V	
Nominal input voltage	1050 V	
MPP voltage range	860 - 1450 V	
MPP voltage range for nominal power	860 - 1250 V	
No. of independent MPP inputs	1	
No. of DC inputs	1	
Max. PV input current	148 A	
Max. DG short-circuit current	240 A	
Output (AC)		
Nominal AC power (at 50 °C)	125000 W	
Max. AC output power at PF=1 (at 50 °C)	125000 W	
Max. AC apparent power (at 50 °C)	125000 VA	
Max. AC output current	120 A	
Nominal AC voltage	3 / PE, 600 V	
AC voltage range	480 - 690 V	
Nominal grid frequency / Grid frequency range	50 Hz / 45 - 55 Hz, 60 Hz / 55 - 65 Hz	
THD	< 3 % (at nominal power)	
DC current injection	< 0.5 % In	
Power factor at nominal power / Adjustable power factor	> 0.99 / 0.8 leading - 0.8 lagging	
feed-in phases / Connection phases	3/3	
Efficiency		
Max. efficiency / Euro. efficiency / CEC effciency	98.9 % / 98.7 % / 98.5 %	
Protection		
DC reverse connection protection	Yes	
AC short-circuit protection	Yes	
Leakage current protection	Yes	
Grid monitoring	Yes	
DC switch / AC switch	Yes / Yes	
Overvoitage protection	DC Type II / AC Type II	
General Data		
Dimensions (W*H*D)	670*890*296 mm 26.4"*35.0"*11.7"	
Weight	72 kg 158.7 lb	
solation method	Transformeriess	
Degree of protection	IP65	
Night power consumption	< 4 W	
Operating ambient temperature range	-25 to 60 °C (> 50 °C derating) -13 to 140 °F (> 122 °F derating)	
Allowable relative humidity range (non-condensing)	0 – 100 %	
Cooling method	Smart forced air cooling	
Max. operating altitude	4000 m (> 3000 m derating) 13123 ft (> 9843 ft derating)	
Display / Communication	LED, Bluetooth+APP / RS485	
DG connection type	DT or DT terminal (Max. 185 mm²)	
AC connection type OT or DT terminal (Max. 185 mm²)		
	CE, IEG 62109-1/-2, IEG 61000-6-2/-4, IEG 61727, IEG 62116, IEG 61000-	
	GC, 120 02108-17-2, 120 01000-0-2-4, 120 017-27, 120 02110, 120 01000	
	3-11/-12, UL 1741, UL 1741 SA, IEEE 1547, IEEE 1547.1, CSA	
Compliance	3-11/-12, UL 1741, UL 1741 SA, IEEE 1547, IEEE 1547.1, OSA	
Compliance Grid support	3-11/-12, UL 1741, UL 1741 SA, IEEE 1547, IEEE 1547.1, OSA C22.2 107.1-01-2001 and California Rule 21	

www.jinkosolar.com

Bifacial HC 72M 520-540 Watt

ISO9001:2015.ISO14001:2015.ISO45001;2018 certified factory.

IEC61215, IEC61730, certified products

KEY FEATURES

Multi Busbar Solar Cell
MBB solar cell adopts new technology to improve the efficiency of
modules, offers a better aesthetic appearance, making it perfect for rooftop
installation.

Excellent Anti-PID performance guarantee limited power degradation for mass production.

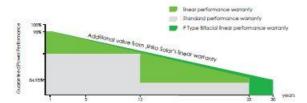
Higher Lifetime Power Yield:

Light-weight design:

Light-weight design using transparent backsheet for easy installation and low BOS cost:

Higher power output:Module power increases \$-25% generally (per different reflective condition) lower LCOE and higher IRR

Better low-light performance: Excellent performance in low-light environments (e.g. early morning, dusk, and cloud, etc.)



LINEAR PERFORMANCE WARRANTY


12 Year Product Warranty + 30 Year Linear Power Warranty 0.45% Annual Degradation Over 30 years

------- Sistemas Fotovoltaicos

JKM520-540M-72HL4-TV-A1-EN

OVR PV T2 40-1500 P TS QS BULK

General Information

 Extended Product Type:
 OVR PV T2 40-1500 P TS QS BULK

 Product ID:
 2CTB80415322700

 EAN:
 3660308527301

 Catalog Description:
 OVR PV T2 40-1500 P TS QS BULK

 Long Description:
 OVR PV T2 40-1500 P TS QS BULK

Categories

Products » Low Voltage Products and Systems » Modular DIN Rail Products » Surge Protective Devices SPDs » Surge Protective Devices SPD Class II

Ordering

 Product Main Type:
 T2

 EAN:
 3680308527301

 Minimum Order Quantity:
 30 piece

 Customs Tariff Number:
 85363090

Technical

 Number of Protected Poles:
 2

 Standards:
 EN 50539-11/UL14419 Ed4

 Version:
 Plug-in

 Discharge Current ():
 Norninal 20 kA Maximum 40 kA

 Impulse Current:
 {(Imp) 10 / 350 μs 2 kA {(total) 10 / 350 μs 4 kA

 Product Name:
 Surge Protective Devices

Dimensions

 Product Net Width:
 53.4 mm

 Product Net Depth:
 64.8 mm

 Product Net Height:
 95 mm

 Product Net Weight:
 0.455 kg

Container Information

 Package Level 1 Units:
 1 piece

 Package Level 1 Width:
 117 mm

 Package Level 1 Length:
 25 mm

 Package Level 1 Height:
 82 mm

 Package Level 1 Gross Weight:
 70 g

 Package Level 1 EAN:
 3660308527301

Certificates and Declarations (Document Number)

UL Certificate: E322885

Data Sheet, Technical Information: N

Classifications

ETIM 4: EC001457 - Combined arrester for power supply systems
ETIM 5: EC001457 - Combined arrester for power supply systems

Características gerais dos disjuntores fixos com comando lateral à direita (12 - 17,5 - 24 kV)

Disjuntor		HD4/RE 12	HD4/RE 17	HD4/RE 24
Normas	IEC 62271-100		•	•
Tensão nominal	Ur [kV]	12	17,5	24
Tensão nominal de isolamento	Us [kV]	12	17,5	24
Tensão suportável a 50 Hz	Ud (1 min.) [kV]	28	38	50
Tensão de impulso suportável	Up [kV]	75	95	125
Frequência nominal	fr [Hz]	50-60	50-60	50-60
Corrente térmica nominal (40 °C)	Ir [A]	630	630	630
Capacidade de interrupção nominal (corrente	Isc [kA]	12,5	12,5	12,5
nominal simétrica de curto-circuito)		16	16	16
Corrente nominal suportável	lk [kA]	12,5	12,5	12,5
de curta duração (1 s)		16	16	16
Capacidade de fechamento	lp [kA]	31,5	31,5	31,5
		40	40	40
Sequência de operações	[O - 3m - CO - 3m - CO]		•	
Classe mecânica	M1 - 2,000 CO			•
Classe elétrica	E1	•	•	•
Duração de abertura	[ms]	77	77	77
Duração do arco	[ms]	1015	1015	1015
Duração total de interrupção	[ms]	8792	8792	8792
Duração de fechamento	[ms]	50	50	50
Dimensões 🛹	H [mm]	764,5	764,5	764,5
(máximas)	L [mm]	321	321	321
	P (mm)	1049	1049	1049
1.J	Distância entre os polos [mm]	230	230	230
Peso [©]	[kg]	74	74	74
Pressão absoluta do gás (valor nominal de serviço)	(kPa)	380	380	380
Aplicação do dispositivo de proteção PR521	In [A]		aplicação não disponíve	l .
Aplicação do dispositivo de proteção REF 601	In [A]	● /II	•(1)	•(1)
Quadro normalizado das dimensões		1VCD000207	1VCD000207	1VCD000207
Esquema elétrico	sem dispositivo de proteção instalado	1VCD400150	1VCD400150	1VCD400150
	com-REF 601	1VCD400150	1VCD400150	1VCD400150
Temperatura de funcionamento	[°C]	- 5 + 40	- 5 + 40	- 5 + 40
Tropicalização	IEC: 60068-2-30, 60721-2-1	•		•
Compatibilidade eletromagnética	IEC 62271-1	•	•	

OTDC315EV12

General Information

Extended Product Type: OTDC315EV12 Product ID: 1SCA132258R1001 6417019614113 Catalog Description: OTDC315EV12 DC Switch-disconnector

including terminal bolt kit. Handle and shaft have to be ordered separately Long Description:

Categories

Products » Low Voltage Products and Systems » Switches » Cam Switches

Ordering

6417019614113 Minimum Order Quantity: 1 piece Customs Tariff Number:

Dimensions

Product Net Width: 266 mm Product Net Height: 227 mm Product Net Depth: 105 mm Product Net Weight: 4.7 kg

Container Information

Package Level 1 Units: 1 piece Package Level 1 Width: 243 mm Package Level 1 Height: Package Level 1 Length: 143 mm 432 mm Package Level 1 Gross Weight: 5,1 kg 6417019614113 Package Level 1 EAN:

Environmental

RoHS Status: Planned to follow EU Directive 2002/95/EC August 18, 2005 and amendment after 2009 Q4

Additional Information

Conventional Thermal Current (Ithe): Fully Enclosed 315 A Earthing Switch Type: No Additional Type Handle Type: IIT Publishing Status: Handle and shaft not included Level 0 - Information enabled

Includes: Mounting Type: Normal Number of Poles: Operating Mode: Front Operated

Power Loss: Product Main Type: at Rated Operating Conditions per Pole 6 W

OTDC315

Product Name: DC Switch-disconnector Rated Impulse Withstand Voltage 12 kV

(Uimp): Rated Insulation Voltage (U): 1500 V

Rated Short-time Withstand Current for 1 s 10 kiloampere ms

(I_{cw}):

Pollution Degree:

Special Functions: 1500 V pre-connected

Standards: IEC: Switches Operating Mechanism: Mechanism Between the Poles

Terminal Type: Lug terminals

Certificates and Declarations (Document Number)

Declaration of Conformity - CE: 1SCC301009K0201 Data Sheet, Technical Information: 1SCC301021C0201

Classifications

ETIM 5: EC000216 - Switch disconnector

Object Classification Code:

Q

PRODUCT-DETAILS

E1.2N 1600 Ekip Dip LSI 3p F F

E1.2N 1600 Ekip Dip LSI 3p F F

Informações gerais	
Extended Product Type	E1.2N 1600 Ekip Dip LSI 3p F F
Product ID	1SDA070882R1
EAN	8015644747329
Catalog Description	E1.2N 1600 Ekip Dip LSI 3p F F
Long Description	C.BREAKER SACE EMAX2 E1.2N 1600 FIXED THREE-POLE WITH FRONT TERMINALS AND SOLID-STATE RELEASE IN AC EKIP/DIP-LSI R 1600 FITTED WITH: 4 AUXILIARY CONTACT AND C.BREAKER IN POSITION OPEN-CLOSED

Ordering	
EAN	8015644747329
Minimum Order Quantity	1 piece
Customs Tariff Number	85362090

Dimensions	
Product Net Width	210 mm
Product Net Height	296 mm
Product Net Depth / Length	183 mm
Product Net Weight	14 kg

Container Information

Package Level 1 Units	1 piece
Package Level 1 Width	270 mm
Package Level 1 Height	350 mm
Package Level 1 Depth / Length	330 mm
Package Level 1 Gross Weight	16 kg
Package Level 1 EAN	8015644747329

Environmental	
RoHS Status	Following EU Directive 2011/65/EU and Amendment 2015/863 July 22, 2019

Electrical Durability	
	Ue =< 440 V 3000 cycle
	Ue = 500 690 V 6500 cycl
	30 cycles per hou
Mechanical Durability	20000 cycl
	60 cycles per hou
Number of Poles	
Power Loss	201 V
Product Main Type	SACE Emax
Product Name	Air Circuit Breake
Product Type	Air Circuit Breake
Rated Service Short-	100 9
Circuit Breaking	62557
Capacity, in % of Icu (Ics)	
Rated Current (In)	1600
Rated Voltage (Ur)	690 \
Rated Impulse	acc. to IEC 60947-2 12 k
Withstand Voltage (U _{Imp}	
	TO CONTROL OF THE PARTY OF THE
Rated Insulation Voltage	AC 1000
(U ₁)	
Rated Operational Voltage	690 V A
Rated Service Short-	(220 V AC) 66 kg
Circuit Breaking	(230 V AC) 66 k
Capacity (I _{cs})	(380 V AC) 66 k
	(400 V AC) 50 k
	(415 V AC) 50 k
	(440 V AC) 50 k
	(500 V AC) 50 k
	(660 V AC) 50 k (690 V AC) 50 k
Rated Short-time	
Rated Short-time Withstand Current Low	for 1 s 50 kg for 3 s 30 kg
Voltage (I _{CW})	101 3 3 30 10
Rated Ultimate Short-	(400 V AC) 66 kg
Circuit Breaking	(415 V AC) 66 kg
Capacity (I _{cu})	(440 V AC) 66 kg
	(500 V AC) 50 kg
	(525 V AC) 50 k
	(690 V AC) 50 ki
Rated Uninterrupted	1600
Current (Iu)	يست ويستان والمساور و
Release	Ekip Dip LS
Release Type	E
Short-Circuit Performance Level	

Version	F
Туре	
Terminal Connection	Front
Sub-type	E1.2
Standards	IEC

Data Sheet, Technical Information	1SDC200023D0209
Declaration of Conformity - CE	9AKK106713A5546
Environmental Information	1SDL000197R0003
Instructions and Manuals	15DH000999R0002
REACH Declaration	9AKK108466A1425
RoHS Information	9AKK108466A1424

Classifications	
ETIM 4	EC000228 - Power circuit-breaker for trafo/generator/installation prot
ETIM 5	EC000228 - Power circuit-breaker for trafo/generator/installation prot
ETIM 6	EC000228 - Power circuit-breaker for trafo/generator/installation prot
ETIM 7	EC000228 - Power circuit-breaker for trafo/generator/installation protection
Object Classification Code	Q
WEEE Category	5. Small Equipment (No External Dimension More Than 50 cm)

Categorias

Produtos e Sistemas de Baixa Tensão \rightarrow Disjuntores \rightarrow Disjuntores abertos \rightarrow Emax 2

