

Universidade Federal de Viçosa - UFV
Centro de Ciências Exatas e Tecnológicas - CCE
Departamento de Engenharia Elétrica - DEL

Projeto de um sistema fotovoltaico de 5kW conectado à rede para a localidade de Belo Horizonte - MG

ELT 554 - TRABALHO DE CONCLUSÃO DE CURSO

Aluno: Enrico Silva Murta ORIENTADOR: Prof. Me. Dayane do Carmo Mendonça Viçosa, 16 de Fevereiro de 2022. Aluno: Enrico Silva Murta

Projeto de um sistema fotovoltaico de 5kW conectado à rede para a localidade de Belo Horizonte - MG

Trabalho de Conclusão de Curso submetido ao Departamento de Engenharia Elétrica da Universidade Federal de Viçosa para a obtenção dos créditos referentes à disciplina ELT 554 do curso de Especialização em Sistemas Fotovoltaicos Isolados e Conectados à Rede Elétrica.

Orientador: Prof. Me. Dayane de Carmo Mendonça

Viçosa, 16 de Fevereiro de 2022.

ATA DE APROVAÇÃO

Aluno: Enrico Silva Murta

Projeto de um sistema fotovoltaico de 5kW conectado à rede para a localidade de Belo Horizonte - MG

Trabalho de Conclusão de Curso submetido ao Departamento de Engenharia Elétrica da Universidade Federal de Viçosa para a obtenção dos créditos referentes à disciplina ELT 554 do curso de Especialização em Sistemas Fotovoltaicos Isolados e Conectados à Rede Elétrica.

Aprovada em 16 de Fevereiro de 2022.

Presidente e Orientador: Prof. Me. Dayane do Carmo Mendonça

Universidade Federal de Viçosa

Membro Titular: Prof. Dr. Allan Fagner Cupertino

Universidade Federal de Viçosa

Membro Titular: Prof. Me. Rodrigo Cássio de Barros

Universidade Federal de Viçosa

DEDICATÓRIA

Dedico este trabalho

A minha esposa Grazielle e filhos Matheus, Juliano e Laura, que sempre me apoiaram aos estudos e desafios da vida com compreensão e paciência.

AGRADECIMENTOS

Aos Meus Pai e Mãe por terem me dado os ensinamentos básicos para se conduzir uma vida com dignidade e ética.

RESUMO

Atualmente, os sistemas fotovoltaicos tem se tornado uma realidade nas residências nas mais diversas regiões do mundo e do Brasil. Independentemente do tamanho do sistema fotovoltaico, da renda das famílias, e de condições geográficas. Temos o apelo ecológico e a necessidade de implantação de fontes alternativas de energia. Além disso, tem-se as questões adotadas pelos órgãos governamentais como isenção de impostos, créditos de energia para serem usados no futuro e opções de financiamento com benefícios e taxas mais baixas praticadas no mercado do que para outros tipos de operação.

Este trabalho tem como objetivo o projeto de um sistema fotovoltaico residencial, visando alinhar eficiência do sistema fotovoltaico e custos. O imóvel possui área disponível em seu telhado para a montagem do sistema fotovoltaico, condições físicas e elétricas ideais para a montagem, mas apresenta uma perda por sombreamento, que é um fator de perda determinante no cálculo do sistema.

Porém ao final do projeto constatou-se que este é viável, apresentando um retorno de investimento positivo, representando a longo prazo uma grande economia financeira ao proprietário do imóvel. A expectativa é de implantação do sistema em um cenário muito próximo.

Palavras-chave: Sistema Fotovoltaico, Energias Renováveis.

Lista de Figuras

Figura 1: Vista Frontal do Local da Instalação13
Figura 2: Local da instalação do sistema fotovoltaico. Link google maps13
Figura 3: Vista Superior Telhado - Verão 16/01/2022 - Local de Futura Instalação.
14
Figura 4: Corte lateral do trilho24
Figura 5: Trilho instalado em um telhado de telhas coloniais24
Figura 6: Grampo intermediário para fixar os módulos no trilho de alumínio25
Figura 7: Grampo final para fixar os módulos no trilho de alumínio25
Figura 8: Telhado colonial da residência onde o sistema FV vai ser instalado25
Figura 9: Exemplo de estrutura de fixação em telhado colonial26
Figura 10: Local da instalação do sistema fotovoltaico. Link google maps36
Figura 11: Planta de localização, disposta no projeto elétrico37
Figura 12: Legenda do projeto elétrico38
Figura 13: Padrão de entrada com caixa de medição atual
Figura 14: Padrão de entrada com caixa de medição e medidor bidirecional39
Figura 15: Placa de advertência que deve ser instalada na usina FV, próxima à
caixa de medição (medidas 20 x 15 cm)40
Figura 16: Diagrama unifilar da UC após a instalação da usina solar fotovoltaica.
Simbologia adotada conforme Figura 1241
Figura 17: Diagrama multifilar da UC após a instalação da usina solar fotovoltaica.
Simbologia adotada conforme Figura 1242

Lista de Tabelas

Tabela 1 – Consumo de Energia Elétrica	. 12
Tabela 2 - Características do módulo fotovoltaico utilizado na instalação	.16
Tabela 3 - Características do inversor utilizado na instalação	.19
Tabela 4 – Dados de entrada para dimensionamento dos cabos C.A	.21
Tabela 5 – Dados da usina FV para dimensionamento dos cabos C.A	
Tabela 6 – Seção dos condutores de acordo com os critérios adotados	.22
Tabela 7 – Taxas de Viabilidade Econômica	
Tabela 8 – Variáveis Financeiras	. 29
Tabela 9 – Parâmetros do Dimensionamento da Usina	
Tabela 10 – Projeto - Telhado	.31
Tabela 11 – Custo de Limpeza do Sistema Fotovoltaico	
Tabela 12 – Fluxo de Caixa 1	
Tabela 13 – Fluxo de Caixa 2	.33
Tabela 14 – Fluxo de Caixa 3	
Tabela 15 – Indicadores econômicos	

Lista de Abreviação

FV Fotovoltaico

TMA Taxa Mínima de Atratividade

VPL Valor Presente Líquido

TIR Taxa Interna de Retorno

FC Fluxo de Caixa

MPPT Maximum Power Point Tracking

DPS Dispositivo de Proteção Contra Surto

ART Análise de Responsabilidade Técnica

UC Unidade Consumidora

Lista de Símbolos

W_{modulo}	Produção de energia do módulo
N	Número de Módulos
A	Área do módulo FV escolhido
3	Eficiência do módulo FV escolhido
φ	Eficiência do Sistema
$V_{oc,max}$	Tensão de circuito aberto máxima
V_{oc}	Tensão de circuito aberto
K_v	Coeficiente de temperatura de v_{oc}
T_f	Temperatura mínima de operação do módulo FV
T_{STC}	Temperatura em condições normais de teste do módulo FV (25°C e 1000W/m²)
I_{sc}	Corrente de Curto Circuito
S	Seção do Condutor
U	Tensão total dos módulos FV
ϵ	Queda de tensão x U
L	Comprimento total de cabos, positivo e negativo
I_b	Corrente de projeto
σ	Impedância do cabo

Sumário

1- Análise do Local da Instalação	12
1.1 Análise do Consumo de Energia	12
1.2 Localização do Sistema Fotovoltaico	13
1.3 Análise do Efeito de Sombreamento e Perdas	14
2- Dimensionamento do Sistema Fotovoltaico	15
2.1 Dimensionamento dos Módulos Fotovoltaicos	15
2.2 Dimensionamento dos Inversores	17
2.3 Dimensionamento da Proteção	19
2.4 Dimensionamento dos Cabos C.C	20
2.5 Dimensionamento dos Cabos C.A	21
2.6 Aterramento	23
2.7 Estrutura de Fixação	24
3- Análise de Viabilidade Econômica	27
3.1 Percentual de Redução do Consumo	28
3.2 Análise de Despesas: Manutenção, Limpeza, Conc Equipamentos	
3.3 Fluxo de Caixa	32
3.4 Análise da Viabilidade	35
4- Projeto Elétrico	36
4.1 Planta Localização	36
4.2 Projeto Elétrico: Diagrama Unifilar	37
4.3 Projeto Elétrico: Diagrama Multifilar	42
6- Referências Bibliográficas	43
Anexo 1: Conta de energia do cliente	44
Anexo 2: Datasheet do módulo fotovoltaico	45
Anexo 3: Datasheet do otimizador de potência	47
Anexo 4: Datasheet do inversor	49
Anexo 5: Tabela de compatibilidade do Inversor PHB ao	Módulo da Jinko51

1- Análise do Local da Instalação

Este capítulo tem objetivo de determinação, análise e verificação ao local de instalação para instalação de sistema fotovoltaico em instalação residencial do grupo B.

1.1 Análise do Consumo de Energia

O presente trabalho analisa um imóvel residencial, que possui um contrato de demanda contratada com a empresa Origo. No entanto, esse contrato não atende à demanda mensal da residência. Analisando a conta de energia disposta no Anexo 1 e os dados de consumo da Tabela 1, verifica-se um consumo de energia sazonal, porém com tendência de aumento e picos de consumo.

Levando em consideração o histórico de consumo do último ano, o consumo médio mensal é de 414,83kWh e diário de 13,64kWh. A tendência de aumento no consumo observada na conta de energia deve-se a inclusão de mais membros residindo na casa.

Tabela 1 - Consumo de Energia Elétrica.

	Consumo de energia (k	Wh)
	Mês	kWh
	dez/21	403
	nov/21	425
	out/21	387
	set/21	452
1.	ago/21	493
202	jul/21	439
Ano 2021	jun/21	405
⋖	mai/21	416
	abr/21	416
	mar/21	428
	fev/21	335
	jan/21	379
	Média (mês) KWh - 2021	414,83
	Média (dia) KWh - 2021	13,64
	Consumo anual - kWh - 2021	4.978,00

1.2 Localização do Sistema Fotovoltaico

O sistema fotovoltaico (FV) será instalado no telhado da residência localizada na rua Guilherme Leite, número 127, Bairro Caiçaras, na cidade de Belo Horizonte em Minas Gerais. A Figura 1 ilustra a vista frontal da residência onde o sistema será instalado.

Figura 1: Vista Frontal do Local da Instalação.

A Figura 2 ilustra o local de instalação do sistema fotovoltaico: Latitude $(Y) = -19,90566^{\circ}$ e Longitude $(X) = -43,96190^{\circ}$.

Figura 2: Local da instalação do sistema fotovoltaico. Link google maps

1.3 Análise do Efeito de Sombreamento e Perdas

O imóvel possui um telhado de duas águas conforme apresentado na Figura 1, sendo um dos lados (Figura 3) direcionado ao Norte Geográfico, com muita área disponível, favorecendo a montagem do sistema fotovoltaico. Durante 3 estações do ano (primavera, verão e outono), o telhado possui boa incidência solar direta. Nas estações de primavera e outono ocorrem poucas perdas por sombreamento estimadas em 2 horas dias. No entanto, no inverno esse telhado fica sombreado entre 11:00h e 16:00h devido a um edifício localizado próximo a residência. Devido a estes fatores de sombreamento, será previsto uma perda de geração na energia através do sistema fotovoltaico.

Figura 3: Vista Superior Telhado - Verão 16/01/2022 - Local de Futura Instalação.

2- Dimensionamento do Sistema Fotovoltaico

Este capítulo tem como objetivo demonstrar o dimensionamento dos principais equipamentos e cabos necessários ao sistema fotovoltaico. Em função das condições de sombreamento da instalação do sistema FV, será adotado a tecnologia e arquitetura de otimizador de potência juntamente com inversor.

2.1 Dimensionamento dos Módulos Fotovoltaicos

Inicialmente no dimensionamento dos módulos fotovoltaicos foi realizada uma pesquisa de mercado buscando verificar os equipamentos disponíveis em estoque nos distribuidores de kit´s solares alinhado aos de custos de investimento, marca, qualidade e eficiência. Outros parâmetros utilizados na determinação dos módulos fotovoltaicos foram a análise da capacidade dos otimizadores de potência e inversores em ser compatível tecnicamente ao módulo FV escolhido e o montante anual de energia a ser gerada ao ano a suprir a necessidade da residência.

Realizada a pesquisa de mercado de KIT´s FV com a utilização de otimizadores de potência fabricação, foram encontrados KIT´s com módulos de 540W de potência da marca JINKO modelo JKM540M-72HL4-V de 144 células, datasheet pode ser encontrado em Anexo 2. A produção esperada para um módulo fotovoltaico encontrado pode ser calculada pela fórmula abaixo:

$$W_{arranjo} = N \times Irradiância \times A \times \varepsilon \times \varphi$$
 (1)

Sendo:

 $W_{arranjo} = Potencia KWh/dia;$

N = Número de Módulos;

Irradiância = medida em kW/m²dia, para um determinado local;

A = Área do módulo FV escolhido;

 ε = Eficiência do módulo FV escolhido;

φ = Eficiência do Sistema;

As características e especificações técnicas dos módulos fotovoltaicos utilizados neste sistema estão apresentadas na Tabela 2. Os valores de tensão, corrente e potência apresentados na Tabela 2 são válidos paras as seguintes condições climáticas: 25°C e 1000W/m². São 10 módulos fotovoltaicos ao total, resultando em uma potência de pico de 5,4 kW. Um total de aproximadamente 25,78 m² de área serão necessários apenas para comportar o arranjo de módulos.

Tabela 2 - Características do Hoddio Totovoltaico utilizado ha Iristalação.		
Módulo fotovoltaico		
Modelo	JKM540M-72HL4-V	
Potência de pico (<i>Pmax</i>)	540 W	
Tecnologia da célula	P tipo Mono-Cristalino	
Garantia de produtividade	25 Anos de garantia de Potência	
Garantia de perda de produção linear	0,55% de Degradação ao Ano	
Tensão de máxima potência (Vmp)	40,70 V	
Corrente de máxima potência (Imp)	13,27 A	
Tensão de circuito aberto (Voc)	49,24 V	
Corrente de curto-circuito (Isc)	13,85 A	
Número de células	144	
Eficiência STC (%)	20,94 %	
Massa	28,90 kg	
Dimensão	2274 x 1134 x 35 mm	

Tabela 2 - Características do módulo fotovoltaico utilizado na instalação

Considerando os dados do módulo fotovoltaico, irradiância do local de 5,129 kW/m²dia e eficiência total do sistema de 74%, sendo 20% perdas por sombreamento, 4% perdas por geografia, 2% perdas por cabos, a produção esperada para um módulo fotovoltaico é:

Cálculo:

$$W_{m \acute{o} dulo} = 1 \times 5,129 \times 2,578716 \times 0,2094 \times 0,74 = 2,04 \text{kWh/dia}$$
 (2)

Sabendo-se que a residência necessita de 13,64kW em média diária anual, o número de placas a ser instalado deve ser:

$$N = \frac{Consumo\ dia}{Geração\ m\'odulo\ FV(dia)} = \frac{13,64}{2,04} = 6,68 = 7\ m\'odulos\ FV$$
 (3)

Além disso, a geração mensal estimada de 30 dias calculada com 7 módulos será 428,40 kWh.

Ainda em função da pesquisa de KIT´s fotovoltaicos disponíveis no mercado, e o fator do custo benefício da geração FV definiu-se que será adotado um critério de geração máxima de energia para as estações do ano onde não existem problemas com sombreamento.

Complementando a assertividade ao estudo, realizou uma simulação com a utilização do Software EStimate, parametrizando dimensionamento para casas. Foi considerada a localidade de Belo Horizonte-MG, com irradiação de 5.129kWh/m² dia, fator de perda de 30% (maior parte devido ao sombreamento no inverno), consumo médio 415kWh/mês e sistema bifásico 220V. Com estes dados de entrada, encontrou-se como resultado a utilização de 1 inversor de 5 kW e 7 módulos de 545 W. Resultado similar aos cálculos realizados.

Nas pesquisas de mercado realizadas, foram encontrados diversos Kit´s disponíveis nos integradores de sistemas FV, sendo com o melhor custo benefício ao sistema calculado o resultado de 5 kW potência CA e 5,4kWp, neste caso com 10 módulos. A geração mensal estimada de 30 dias calculada com 10 módulos será 612 kWh, sendo escolhido esta configuração, ressaltando que o sistema será limitado ao corte de geração de potência CA do inversor de 5 kW.

2.2 Dimensionamento dos Inversores

Levando em consideração o sombreamento no local da instalação durante o inverno, será utilizado a topologia e tecnologia com otimizadores de potência juntamente com inversor visando uma melhor eficiência do sistema FV a ser instalado.

O dimensionamento correto do inversor leva em consideração os seguintes critérios: potência do arranjo não deve ultrapassar a potência máxima suportada pelo inversor; a corrente de curto circuito do módulo FV (I_{sc}) deve ser inferior que a corrente máxima do inversor; a tensão contínua máxima deve ser maior que a soma das tensões de circuito aberto dos módulos ($N \times V_{oc}$). Vale ressaltar que a topologia utilizada são de otimizadores, logo, temperatura de operação e assistência técnica devem ser levadas em consideração.

Definido a potência de 5kW de potência CA do sistema, módulo de 540 W de potência da marca JINKO, modelo JKM540M-72HL4-V de 144 células, teremos 10 módulos.

A principal motivação de se utilizar otimizador de potência a este projeto se deve a função primária do otimizador de potência que é garantir o seguimento do ponto de máxima potência por módulo FV e garantir o mínimo de perdas por sombreamento, além da possibilidade de monitorar as condições de cada módulo fotovoltaico da instalação. Os otimizadores de potência apresentam vantagens em relação à segurança, pois a tensão de saída é reduzida para alguns poucos volts

quando o inversor é desligado, reduzindo o risco de choque elétrico durante manutenção do inversor, arcos elétricos e incêndios.

O otimizador deve ser compatível com as características do módulo FV. Através da análise do datasheet do otimizador, conforme apresentado no Anexo 3, o modelo TS4-A-O possui compatibilidade com o módulo FV. Referente a tensão de operação dos módulos fotovoltaicos e levando em consideração uma temperatura mínima em Belo Horizonte de 5°C, a máxima tensão dos módulos fotovoltaicos pode ser estimada pela fórmula abaixo:

$$v_{oc,max} \approx v_{oc} \left(1 + K_v (T_f - T_{STC}) \right) \tag{4}$$

Sendo:

 $V_{oc,max}$ – Tensão de circuito aberto máxima

 V_{oc} – Tensão de circuito aberto

 K_v – Coeficiente de temperatura de Voc

 T_f – Temperatura mínima de operação do módulo FV

 T_{STC} – Temperatura em condições normais de teste do módulo FV (25°C e 1000W/m²)

Levando em consideração os dados do módulo fotovoltaico utilizado, tem-se:

$$V_{oc,max} = 49,42 \left(1 - \frac{0,28}{100} (5 - 25) \right) = 52,18V$$
 (5)

A tensão de 52,18V é inferior a tensão de 80V da faixa de tensão do MPPT do otimizador TS4-A-O e atende a característica de projeto. Serão necessários 10 otimizadores em função do KIT FV de 5,40kWp. Ainda de acordo com o datasheet, Anexo 3, a potência máxima suportada pelo otimizador é de 600W.

O inversor definido na aplicação é o modelo PHB5000T-DS Monofásico de fabricação PHB, ver Anexo 4.

Este modelo atende a potência de entrada CC, além das limitações de corrente e tensão. A PHB fornece tabela onde demonstra que o inversor definido suporta um mínimo de 4 módulos e máximo de 10 módulos por *string*, atendendo as características do projeto, ver Anexo 5. As correntes por *string* serão limitadas pela corrente do módulo FV de 13,27A, e em relação a tensão ficará em no máximo 260,90V (52,18V x 5 módulos FV) por *string*, estando esta abaixo da tensão máxima do inversor de 600Vcc e dentro da faixa de operação do inversor de 80-550Vcc. As características e especificações técnicas principais dos inversores utilizados neste sistema estão apresentadas na Tabela 3.

Tabela 3 - Características do inversor utilizado na instalação.

Inversor Fotovoltaico		
Número de inversores utilizados	1	
Modelo	PHB5000T-DS	
Máxima tensão C.C.	600 Vcc	
Faixa de operação MPPT	80-550Vcc	
Tensão C.C. de partida	80Vcc	
Corrente C.C. máxima	13A	
Número de MPPTs	2	
Potência C.A. nominal	5000W	
Máxima corrente C.A RMS	22,80A	
Saída C.A. nominal	208/220/230/240Vca	
Taxa de distorção harmônica	<3%	
Eficiência máxima	97,80%	
Massa	13kg	
Dimensões LxAxP mm	354 x 433 x 147mm	

2.3 Dimensionamento da Proteção

Os circuitos e equipamentos elétricos devem possuir as proteções necessárias para garantir a segurança, confiabilidade e integridade do sistema e equipamentos.

As proteções do lado C.C. incluem equipamentos como dispositivos de proteção contra surtos (DPS) na tensão de aplicação do módulo FV e também na corrente de surto, sendo 20kA ou 40kA típicos de mercado, fusíveis de proteção de curto circuito não obrigatórios e chaves seccionadoras para abertura do circuito elétrico c.c., sendo estes equipamentos montados em uma caixa denominada comercialmente e tecnicamente de *string box*. Soluções residenciais por possuírem circuitos com corrente limitadas em sua maioria de projeto são limitadas em 15A ou 20A por *string* e seccionadora em 32A de corrente máxima devido a padronização de mercado.

A proteção do lado C.A. podem incluir seccionadoras ou disjuntores termomagnéticos e dispositivo de proteção contra surtos elétricos (DPS).

O inversor definido é modelo PHB5000T-DS Monofásico de fabricação PHB. Conforme informações do fabricante, o inversor possui a Caixa/Quadro C.C. acoplada, não sendo necessária seccionadora C.C. externa por já possuir incorporado ao equipamento, ver informação no Anexo 4, porém definiu-se em projeto a utilização de caixa *string box* do lado C.C.

A proteção do lado C.A. se dará por disjuntor termomagnético e supressor de surtos. O inversor possui a corrente alternada de 16,72A, definiu-se um disjuntor bipolar 25A classe de isolação 415V e 2 DPS 275V 20KA montado em caixa plástica grau de proteção IP-65 para o Lado C.A.

2.4 Dimensionamento dos Cabos C.C.

A arquitetura utilizada com a utilização de otimizadores de potência possui como característica os equipamentos já serem fornecidos com os cabos elétricos para suas interligações, sendo necessário os cabos de ligação do último otimizador ao inversor. O arranjo do sistema FV será composto por dois circuitos com 5 otimizadores até inversor solar. A corrente de projeto por MPPT, considerando a corrente de curto-circuito do arranjo, é dada por:

$$I_b = I_{sc} \times 1,5 = 13,85 \times 1,5 = 20,74A$$
 (6)

O sistema de instalação a ser utilizada no projeto será através de condutores isolados ou cabos unipolares em eletroduto aparente (sobrepor) de seção circular sobre parede ou pouco espaçado da parede, método de instalação 3, m_B1. Analisando a tabela de capacidade de condução de cabos elétricos da norma NBR5410, Método de Instalação B1, temos o cabo de cobre recomendado de 2,5mm², porém serão adotados cabos de 4mm² em função dos cabos do Kit FV.

Através do critério da queda de tensão, admitindo até 2% de queda máxima temos a seguinte formula para o cálculo da seção dos condutores:

$$S = L \times \left(\frac{I_b}{\sigma \ x \ \epsilon}\right) \tag{7}$$

Sendo:

U - Tensão total dos módulos FV;

 ϵ =Queda de tensão x U;

L - Comprimento total de cabos, positivo e negativo;

I_b – Corrente de projeto;

 σ = Impedância do cabo;

Considerando os dados de projeto a seguir, pode-se calcular a seção do condutor:

$$U = 40,70 \times 10 = 407,00V;$$

L = 20m + 20m (positivo+negativo) = 40m;

 $I_b = 20,74A;$

 $\sigma = 44 \text{m}/\Omega \text{mm}^2$;

 $\epsilon = 0.02 \times U = 0.02 \times 407.00 = 8.14;$

$$S = L \times \left(\frac{I_b}{\sigma x \epsilon}\right) = 40 \times \left(\frac{20,74}{44 \times 8,14}\right) = 2,32mm^2 \tag{8}$$

O cabo a ser dimensionado pelo critério de queda tensão é 2,5mm², porém será adotado o cabo de 4mm².

2.5 Dimensionamento dos Cabos C.A.

O dimensionamento dos cabos C.A. será através da planilha de dimensionamento de cabos elétricos fornecido durante o curso na matéria ELT567 semana 4. Os dados de entrada a planilha foram o método de referência do cabo na instalação "m_b1" que corresponde a Condutores isolados ou cabos unipolares em eletroduto aparente (sobrepor) de seção circular sobre parede ou pouco espaçado da parede, isolação do cabo em PVC, temperatura ambiente aproximada de 30°C, número de condutores dois e número de circuitos na linha elétrica de somente uma linha elétrica, conforme demonstrado abaixo.

Tabela 4 - Dados de entrada para dimensionamento dos cabos C.A.

Dados de entrada	Valor
Método de referência	m_B1
Isolação	Isolação PVC
Temperatura ambiente	30
Número de condutores carregados	2
Número de circuitos na linha elétrica	1

Os dados da usina FV já determinados anteriormente são de potência de 5000W e tensão de linha em 220V. O sistema onde será instalado é bifásico, possui uma corrente de 21,74A e a distância do inversor FV ao quadro de luz da residência é de aproximadamente 20 metros por fase totalizando 40 metros. Adotou-se a premissa de uma queda de tensão máxima de 2% ao ponto de entrega de energia para se obter o máximo de eficiência, conforme demonstrado abaixo.

Tabela 5 – Dados da usina FV para dimensionamento dos cabos C.A.

Dados da usina FV	Valor	Unidade
Potência ca	5000	W
Tensão RMS de linha	230	V
Tipo de sistema	Monofásico/Bifásico	-
Corrente RMS nominal	21,73913043	Α
Corrente de projeto	21,73913043	Α
Distância do transformador	40	m
Queda de tensão admissível do ponto de entrega	2	%
Impedância mínima nestas condições	5,29	V/Akm

Adotou-se ainda o critério de seção mínima de cabos em 2,5mm², capacidade de condução de corrente para cabos mínimos de 2,5mm², e o critério da queda de tensão em 4mm², conforme demonstrado abaixo.

Tabela 6 – Seção dos condutores de acordo com os critérios adotados.

Critério seção mínima	2,5	mm²
Critério da capacidade de condução de corrente	2,5	mm²
Critério da queda de tensão	4	mm²
Seção final	4	mm²

O resultado obtido pela planilha de dimensionamento de cabos é a utilização de cabo de 4mm².

2.6 Aterramento

Segundo a norma NBR5410 existe uma classificação para cada tipo de aterramento, sendo baseado em letras, classificadas:

A primeira letra se refere a situação da alimentação em relação à terra podendo ser:

T = um ponto diretamente aterrado;

I = isolação de todas as partes vivas em relação à terra, ou aterramento de um ponto através de impedância;

A segunda letra refere-se a situação da massa, ou seja, do inversor FV em relação à terra, classificados:

T = inversor FV diretamente aterrado, independente do aterramento eventual de um ponto de alimentação;

N = inversor FV ligado ao ponto da alimentação aterrada, onde geralmente fica aterrado junto ao ponto do neutro.

Outras letras em relação ao condutor neutro e do condutor de proteção:

S = função de neutro e de proteção asseguradas por condutores distintos;

C = função de neutro e de proteção combinadas em um único condutor (Condutor PEN);

Segundo a norma NBR 16690 temos dois conceitos de aterramento, aterramento funcional e aterramento para proteção, sendo no caso do aterramento funcional o arranjo FV tem um condutor intencionalmente conectado à terra que visa garantir o perfeito e correto funcionamento do sistema FV, sem levar em consideração questões de segurança, sendo esse sistema não sendo considerado um arranjo FV aterrado, verifica-se que o tipo de aterramento nestes casos são TN-C e TN-S. O segundo conceito de aterramento para proteção, a norma define que a ligação à terra dos equipamentos é realizada por razão relacionada a segurança, sendo assim o tipo de aterramento TT geralmente é o mais utilizado.

Determinou-se neste projeto o conceito de utilização de aterramento para proteção TT, devido ser uma instalação residencial, possibilidade de instalação de hastes de aterramento, e por questões de segurança todas as massas da instalação são ligadas a um eletrodo de aterramento eletricamente distinto do eletrodo de aterramento da fonte, ou seja, os equipamentos são aterrados com uma haste própria, diferente da usada para o neutro.

2.7 Estrutura de Fixação

Uma das primeiras premissas ao estudo de instalação de um sistema FV corresponde à onde o sistema será instalado. Em sistemas residenciais em sua maioria é no telhado devido ao porte da instalação. Sistema FV de médio a grande porte as instalações ocorrem em grandes lajes, galpões ou em solo.

O primeiro componente em destaque é o trilho de fixação que fica debaixo dos módulos FV. Neste projeto serão utilizados trilhos de alumínio anodizado com vida útil esperada de 25 anos, sendo já no projeto incluso no kit FV a ser adquirido do distribuidor. A Figura 4 exibe um corte lateral do trilho e a Figura 5 exibe o trilho já instalado num telhado de telhas coloniais.

Figura 4: Corte lateral do trilho.

Figura 5: Trilho instalado em um telhado de telhas coloniais.

A fixação do módulo FV ao trilho de alumínio é realizada através de grampos de fixação, podendo ser entre módulos e no final do trilho. São melhores na prática a utilização de dois trilhos para suportar e sustentar os módulos, um na parte superior e outro na parte inferior, além da instalação dos grampos presos aos trilhos. A Figura 6 mostra um grampo intermediário e a Figura 7 mostra um grampo final.

Figura 6: Grampo intermediário para fixar os módulos no trilho de alumínio.

Figura 7: Grampo final para fixar os módulos no trilho de alumínio.

Temos diversos tipos de telhado com diversas telhas, destacando-se a telha de cerâmica em ambientes residenciais, além de telhas fibrocimento e trapezoidal. O telhado em estudo é de telha colonial, conforme Figura 8, e a estrutura de fixação adotada ao projeto será própria com caibros de madeira apropriados para este local, conforme apresentado na Figura 9.

Figura 8: Telhado colonial da residência onde o sistema FV vai ser instalado.

Figura 9: Exemplo de estrutura de fixação em telhado colonial.

3- Análise de Viabilidade Econômica

Este capítulo tem como objetivo a análise de viabilidade econômico-financeira do investimento ao projeto, visando analisar se este investimento é viável ou não. Além da análise econômico-financeira vale ressaltar ao apelo ecológico do projeto que visa a sustentabilidade do sistema perante ao consumo de energia elétrica do investidor ao sistema FV.

Na análise de viabilidade econômico-financeira são utilizados conceitos de matemática financeira. Estes conceitos são usados na análise de forma a mensurar a viabilidade do investimento. São eles:

- TMA Taxa mínima de atratividade, demonstra o mínimo que um investimento deve ser remunerado para que seja considerado viável economicamente.
- VPL Valor presente líquido, que atualiza para a data atual todos os fluxos de caixa do investimento somando ao valor inicial do investimento, usando como taxa de desconto a TMA do investimento. O VPL é dado pela equação:

$$VPL = FC_0 + \sum_{n=1}^{N} \frac{FC_n}{(1 + TMA)^n}$$
 (9)

onde FC_0 representa o fluxo de caixa do período zero, isto é, o investimento inicial, FC_n é o fluxo de caixa no período n.

 TIR – Taxa interna de retorno, indica a percentagem de juros no qual a VPL do investimento é zero, isto é a taxa em que o investimento apenas se pagaria. A partir da TIR é possível determinar o valor máximo da TMA onde há viabilidade econômica no investimento. O TIR é dado pela equação:

$$0 = FC_0 + \sum_{n=1}^{N} \frac{FC_n}{(1 + TIR)^n}$$
 (10)

 PB – Payback, indica o tempo de retorno de capital, onde trata do tempo no qual o investidor recupera o valor investido. Pode ser calculado de forma simples ou descontado, quando calculado sem descontar os fluxos de caixa futuros é chamado de Payback simples e quando utiliza a TMA então é chamado de Payback descontado.

3.1 Percentual de Redução do Consumo

Uma forma de análise financeira é baseada no percentual de redução de consumo, onde o cliente tem o consumo médio em kWh com seu respectivo valor, os custos da taxa de iluminação pública, e determina-se percentualmente quanto esse cliente conseguirá reduzir na conta de energia se instalar um sistema fotovoltaico. Outro fator que impacta positivamente a favor da instalação do sistema FV são as constantes inclusões das bandeiras nas contas de energia pelo governo federal devido diversos fatores, atualmente a bandeira vermelha que se refere a escassez hídrica está em vigor.

De acordo com o estudo o imóvel possui uma média de consumo de 414,83kWh ao mês e o gasto anual de energia do imóvel será:

Gasto Anual sem Sistema FV = Consumo ao Mês \times Número de Meses x Valor do kWh Gasto Anual sem Sistema $FV = 414,83 \times 12 \times 1,1326 = R\$5.638,04$

Além do consumo deve-se incluir a taxa de iluminação pública:

```
Gasto iluminação pública = Taxa de Iluminação Pública × Número de Meses = R$42,07 \times 12 = R$504,84
```

O gasto anual com energia sem sistema FV será a soma de R\$5.638,04 + R\$504,84, totalizando R\$6.142,88.

Deve-se calcular o valor do gasto de energia com a concessionaria com a inclusão do sistema FV mais o gasto de iluminação pública:

```
Gasto Anual com Sistema FV = Taxa \ de \ Disponibilização \times Número \ de \ Meses \times Valor \ do \ kWh \\ + gasto \ iluminação \ pública
```

Gasto Anual com Sistema $FV = 50,00 \times 12 \times 1,1326 + R$504,84 = R$1.184,40$

Um demonstrativo inicial do ano em análise do estudo da conta de energia é calculado dividindo o gasto anual com inclusão do sistema FV pelo gasto anual sem sistema FV. Com a inclusão do sistema FV a economia com o gasto anual com energia será de 80,72%.

3.2 Análise de Despesas: Manutenção, Limpeza, Concessionária, Troca de Equipamentos

Uma série de análises técnicas devem ser realizadas para verificar a viabilidade de instalação de um sistema FV. Quanto a viabilidade econômica algumas taxas são necessárias para o estudo, sendo as iniciais:

Tabela 7 – Taxas de Viabilidade Econômica.

Taxas	% a.a.
Taxa de reajuste do preço da energia	5
Taxa de reajuste dos valores monetários	5
Taxa de diminuição de eficiência dos módulos	1
Taxa Mínima de Atratividade - TMA*	9

Vale ressaltar que a média nacional de reajuste da energia elétrica em 2021 foi de aproximadamente 25%, porém irá se adotar como taxa de reajuste a expectativa de inflação para 2022 no índice de 5%. A taxa de reajuste dos valores monetários prevista para 2022 está com o índice de 5% e será adotado este valor.

Complementando as taxas de viabilidades econômicas adotadas ao projeto será adotado ao estudo a planilha de dimensionamento de microgeração da disciplina ELT 567.

O início do estudo, de acordo com a planilha de dimensionamento, se dá pelo consumo de energia, dados já apresentados em 1.1 Analise do Consumo de Energia.

O próximo passo se refere ao preenchimento das variáveis financeiras consideradas no projeto, conforme Tabela 8 e onde temos os dados básicos da instalação além das taxas, o valor da tarifa de energia em kWh, o valor mensal do custo de iluminação pública em R\$, e qual a configuração da rede residencial, sendo bifásico.

Tabela 8 - Variáveis Financeiras.

Variáveis Financeiras	
Reajuste da conta de energia:	5%
Número de trafos	0
Taxa de juros do financiamento	6%
TMA	9%

Tarifa Energia (R\$)	1,133
Iluminação publica (R\$)	42,07
Mínimo - Bifásico	50

Dando continuidade, incluiu-se os parâmetros de dimensionamento do sistema FV, sendo a primeira parte referente as condições de irradiação do local e perdas de sombreamento do sistema FV (estudado no item 1.3 Analise do Efeito de Sombreamento e Perdas). Devido as perdas por sombreamento e perdas geográficas, a irradiância considerada é de 3,89804 kWh/m²dia. Considerando módulos de 540W com eficiência de 20,94% temos a produção estimada por módulo de 768,66kW/ano. Além disso, considerou-se 2% de perdas por cabo, resultando em uma eficiência do sistema de 74% e um número mínimo de 7 módulos FV. No entanto, foi considerado 10 módulos conforme kit fotovoltaico orçado e calculado anteriormente, totalizando 5400W, além da troca de um inversor em 10 anos de operação do sistema FV ao custo de R\$4.500,00, conforme apresentado na Tabela 9.

Tabela 9 - Parâmetros do Dimensionamento da Usina.

rabela 9 - Parametros do Dimensionamento da Osina.			
Parâmetros do dimensionamento da usina			
Irradiação (kWh/m2 dia)	5,129		
Perdas sombreamento	20,0%		
Perdas geografia (não alinhado para o norte)	4,0%		
Irradiação considerada (kWh/m2 dia)	3,89804		
Painel fotovoltaico (Wp)	540		
Eficiência do painel	20,94%		
Perda de eficiência por ano	1%		
Área do módulo (m2)	2,58		
Produção por painel (kWh/ano)	768,66		
Perdas do cabo	2,00%		
Eficiência do sistema	74,00%		
	7 1,0070		
Número de paineis (mínimo)	7		
Potência total de paineis	5.400		
Troca dos Inversores (em 10 anos)	R\$ 4.500,0		
Área da Usina (m2)	25,8		
Potência do Trafo - kVA			

O próximo item refere-se ao projeto do telhado e aos custos de equipamentos e mão de obra. Foi considerado ao projeto o valor de R\$1,00 por watt instalado, ou seja, um sistema FV de 5000W foi considerado como o valor da mão de obra de R\$5.000,00, ao custo total do projeto em R\$30.218,00, ver Tabela 10.

Tabela 10 – Projeto - Telhado.

	Projeto - Telhado	
	Potência do painel (Wp)	540
	Número de paineis	10
Kit	Potência do inversor (kW)	5
projetado	Número de inversores	1
	Potência dos inversores (kW)	5
	Preço do kit	R\$ 25.218
	Custo da instalação (R\$ / W)	1
	Mão de obra (R\$)	R\$ 5.000

Custo total	R\$ 30.218,00
-------------	---------------

Para finalizar o fluxo de caixa do projeto, também será levado em consideração a necessidade de 3 limpezas por ano, ao custo de R\$150,00 por limpeza, sendo este valor reajustado em 5% a.a., conforme Tabela 11.

Tabela 11 – Custo de Limpeza do Sistema Fotovoltaico.

Limpeza	
Mão de obra - Valor da diária	R\$ 150,00
Número de dias	1
Número de vezes por ano	3
Reajuste no preço por ano	5%
Total	R\$ 450,00

3.3 Fluxo de Caixa

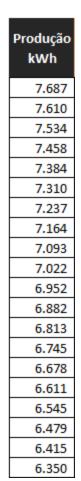

As tabelas a seguir evidenciam o fluxo de caixa do projeto. Na primeira parte temos onde são calculadas as despesas e a produção por ano, ver

Tabela 12.

Tabela 12 - Fluxo de Caixa 1.

Ano	Invest. R\$	
1	30.218	
2	-	
3	-	
4	-	
5	-	
6	-	
7	-	
8	-	
9	-	
10	4.500	
11	-	
12	-	
13	-	
14	-	
15	-	
16	-	
17	-	
18	-	
19	-	
20	-	

R\$/kWh	Iluminação publica R\$	Pagamento Mínimo	Despesa Manutenção R\$
1,13	504,8	680	450
1,19	530,1	714	473
1,25	556,6	749	496
1,31	584,4	787	521
1,38	613,6	826	547
1,45	644,3	867	574
1,52	676,5	911	603
1,59	710,4	956	633
1,67	745,9	1.004	665
1,76	783,2	1.054	698
1,85	822,3	1.107	733
1,94	863,4	1.162	770
2,03	906,6	1.220	808
2,14	952,0	1.282	849
2,24	999,5	1.346	891
2,35	1.049,5	1.413	936
2,47	1.102,0	1.483	982
2,60	1.157,1	1.558	1.031
2,73	1.215,0	1.636	1.083
2,86	1.275,7	1.717	1.137

Na segunda parte tem-se um demonstrativo da energia expirada e o saldo de energia que permanece ao longo do período de 20 anos, ver Tabela 13.

Tabela 13 - Fluxo de Caixa 2.

Produção kWh
7.687
7.610
7.534
7.458
7.384
7.310
7.237
7.164
7.093
7.022
6.952
6.882
6.813
6.745
6.678
6.611
6.545
6.479
6.415
6.350

Energia	Saldo
expirada	Energia 5
(kWh)	anos
	2.709
	5.340
	7.896
	10.376
	12.782
2.709	10.073
2.632	7.442
2.556	4.886
2.480	2.406
2.406	-
2.332	- 2.332
2.259	- 4.591
2.186	- 6.777
2.115	- 8.892
2.044	- 10.936
1.974	- 12.909
1.904	- 14.814
1.835	- 16.649
1.767	- 18.416
1.700	- 20.116

Na terceira parte do fluxo de caixa observa-se as receitas e despesas, o saldo positivo no sexto ano e fluxo descontado positivo no nono ano, indicando um retorno de investimento mais longo, porém o fluxo de caixa do projeto é positivo

Tabela 14.

Tabela 14 - Fluxo de Caixa 3.

Receita R\$	Despesa Total R\$
5.638	1.634
5.920	1.716
6.216	1.802
6.527	1.892
6.854	1.987
7.196	2.086
7.556	2.190
7.934	2.300
8.331	2.415
8.747	2.536
9.184	2.662
9.644	2.795
10.126	2.935
10.632	3.082
11.164	3.236
11.722	3.398
12.308	3.568
12.923	3.746
13.570	3.933
14.248	4.130

Fluxo de Caixa	Saldo	Fluxo Descont.	Ano
- 26.214	- 26.214	- 26.214	1
4.204	- 22.010	- 22.357	2
4.414	- 17.595	- 18.641	3
4.635	- 12.960	- 15.062	4
4.867	- 8.093	- 11.614	5
5.110	- 2.983	- 8.293	6
5.366	2.383	- 5.094	7
5.634	8.017	- 2.012	8
5.916	13.933	957	9
1.712	15.644	1.745	10
6.522	22.166	4.500	11
6.848	29.015	7.154	12
7.191	36.205	9.711	13
7.550	43.755	12.174	14
7.928	51.683	14.546	15
8.324	60.007	16.831	16
8.740	68.748	19.033	17
9.177	77.925	21.153	18
9.636	87.561	23.196	19
10.118	97.679	25.164	20

3.4 Análise da Viabilidade

A Tabela 15 exibe os indicadores econômicos, sendo o VPL de R\$15.164,00, a TIR de 19,06%, Payback simples de 7,6 anos e Payback descontado 8,7 anos.

Tabela 15 - Indicadores econômicos.

VPL (TMA = 9%)	R\$ 25.164
TIR	19,06%
Payback Simples	7,6
Payback Descontado	8,7

Conclui-se através da viabilidade econômica que o investimento é viável e apresentam taxas de retorno aceitáveis, sendo a indicação de investimento no sistema de geração de energia fotovoltaica, além do imóvel possuir as características necessárias a instalação do módulo.

4- Projeto Elétrico

O Prodist (Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional) determina que cabe a distribuidora de energia elétrica de cada estado da federação os estudos para integração a micro e minigeração distribuída. Toda a solicitação formal de acesso ao sistema distribuição de uma concessionária é formalizado através de formulários específicos de cada concessionária a cada acessante. Abaixo listo os principais documentos necessários:

- Análise de Responsabilidade Técnica (ART) do responsável técnico do projeto elétrico e instalação do sistema de microgeração;
- Diagrama elétrico da instalação, contendo as informações dos componentes do sistema;
- Memorial descritivo;
- Certificado de conformidade dos inversores pelo Inmetro;
- Documentos pessoais do titular da unidade geradora;
- Lista de unidades consumidoras do sistema de compensação para rateio dos créditos em caso de sistemas compartilhados.

Este capítulo tem como objetivo apresentar o projeto elétrico e outros fatores como planta de localização, diagrama unifilar e multifilar, simbologia, descritivos da instalação e identificação no padrão de entrada da concessionaria.

4.1 Planta Localização

O sistema fotovoltaico (FV) será instalado no telhado da residência localizada na rua Guilherme Leite, número 127, Bairro Caiçaras, na cidade de Belo Horizonte em Minas Gerais. A Figura 10 ilustra o local de instalação do sistema fotovoltaico: Latitude $(Y) = -19,90566^{\circ}$ e Longitude $(X) = -43,96190^{\circ}$.

Figura 10: Local da instalação do sistema fotovoltaico. Link google maps.

A Figura 11Figura 2 mostra a planta de localização da unidade FV, detalhando pontos de referências da região, localização dos módulos e do ponto de conexão e transformador com a rede elétrica da concessionária. Ressalta-se que a planta de localização está disposta no projeto elétrico, enquanto a localização obtida no Google Maps é apresentada no memorial descritivo quando do envio a concessionaria de energia para aprovação da solicitação do parecer de acesso.

PLANTA DE LOCALIZAÇÃO NUMERO INSTALAÇÃO 3001047763 RUA GUILHERME LEITE 127 - CAIÇARAS CEP 31230-100, BELO HORIZONTE, MINAS GERAIS CONECTADA A REDE BAIXA TENSÃO CONCESSIONARIA CEMIG Rua Desembargular Torres Local FV Rua Desembargular Torres Coord. em graus: Latitude(Y): -19,90566°

Figura 11: Planta de localização, disposta no projeto elétrico.

Longitude(X): -43,96190°

4.2 Projeto Elétrico: Diagrama Unifilar

ESCALA 1:3000

Com o objetivo de simplificar o entendimento dos projetos elétricos de sistema FV, símbolos gráficos são utilizados para representar os componentes e apresentar suas informações básicas. A Figura 12 apresenta a simbologia e a legenda dos componentes elétricos FV utilizados neste projeto FV com as informações básicas destes itens.

Vale ressaltar que toda planta elétrica deve conter: margem, conforme norma; etiqueta com todas as identificações do proprietário e informações básicas; legenda com a simbologia e especificação técnica; esquema unifilar ou multifilar, quando aplicável; detalhes de montagem, quando necessário; e especificação dos componentes elétricos.

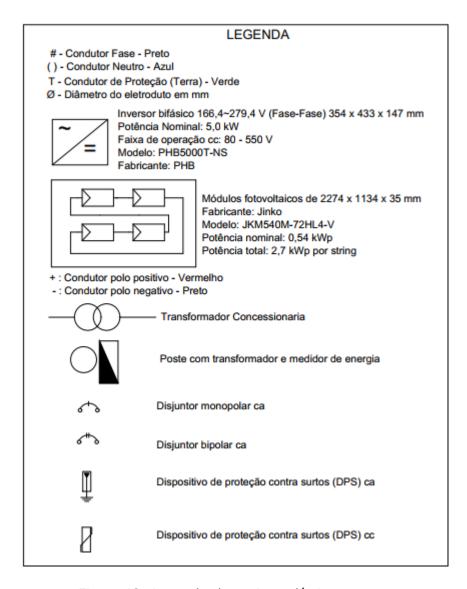


Figura 12: Legenda do projeto elétrico.

O sistema de medição de energia deve ser bidirecional para as unidades consumidoras UC que instalarem sistema FV em suas instalações. A energia ativa injetada e a consumida da rede são apuradas, para gerar descontos e créditos na fatura de energia da UC junto a concessionária.

Durante a fase de análise de viabilidade para a instalação de um sistema FV, deve ser verificado o padrão de entrada da unidade consumidora, que deve estar de acordo com as normas da CEMIG e atender as necessidades técnicas para que sejam instalados os componentes necessários ao sistema FV. As normas de distribuição da CEMIG ND 5.1, 5.2 e 5.5 precisam ser atendidas para o acesso à rede de distribuição e conexão à rede da unidade FV. A Figura 13 mostra o atual padrão da residência.

Figura 13: Padrão de entrada com caixa de medição atual.

A Figura 14 apresenta o cenário do imóvel junto ao seu padrão de entrada e está de acordo com as exigências da CEMIG, porém caso seja constatado qualquer irregularidade do padrão de entrada durante a vistoria para conexão à rede, ele será readequado.

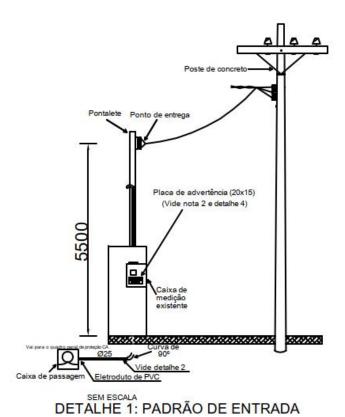


Figura 14: Padrão de entrada com caixa de medição e medidor bidirecional.

Junto ao padrão de entrada de energia, caixa de medição, será instalada uma placa de advertência visando informar aos leituristas da concessionaria e outros profissionais ou pessoas que necessitem acessar a caixa de medição que neste imóvel existe um sistema FV instalado, conforme ilustrado na Figura 15.

Figura 15: Placa de advertência que deve ser instalada na usina FV, próxima à caixa de medição (medidas 20 x 15 cm).

Etapas de estudo da instalação elétrica incluem a análise e planejamento de interferências as interconexões existentes e a instalação de novos componentes no sistema de forma eficiente. A adequação do projeto para a instalação de um sistema FV com relação aos requisitos de segurança sob ponto de vista elétrico deve ser adotada a todo momento, verificando o cumprimento das normas e regulamentos técnicos aplicáveis é uma exigência técnica a projetos FV. A escolha do tipo de condutores e bitola, o dimensionamento do arranjo e inversores FV, especificação dos dispositivos de proteção e representação em planta baixa fazem parte das etapas do projeto elétrico e foram devidamente analisados e verificados.

A Figura 16 apresenta o digrama unifilar da instalação elétrica bifásica (2F+N) com tensão fase-fase (ou de linha) de 220 V eficaz. Uma usina solar fotovoltaica será conectada à esta UC, de onde as seguintes características elétricas do sistema podem ser enumeradas após a instalação do sistema FV:

- ✓ Disjuntor bipolar C.A. de 50 A do padrão de entrada;
- √ Carga instalada existente na unidade consumidora de 10 kW;
- ✓ Condutores C.A. fase de bitola 16 mm² e neutro 10 mm², isolação PVC 500 V em eletrodutos de 32 mm, no padrão de entrada;
 - √ Medidor de energia bidirecional;
- ✓ Dispositivo de proteção contra surtos de 175 V (fase-terra), classe 2, corrente nominal (corrente projetada, na qual é capaz de desviar para o aterramento de proteção) de 20 kA;
- ✓ Condutores C.A. fase de bitola 4 mm², isolação PVC 500V, dispostos em eletroduto de 1" (conecta a saída C.A. do inversor ao circuito C.A. do quadro geral da instalação após a caixa de medição);
 - ✓ Disjuntor C.A. de 32 A no lado C.A. da string box;

- ✓ Condutores c.c. polos positivo e negativo de bitola 4 mm², isolação XLPE 1000V (conecta o arranjo FV à entrada CC do inversor);
- ✓ Dispositivo de seccionamento c.c. de 16 A, tensão máxima de 1000 V de isolação no lado c.c. da string box;
- ✓ Dispositivo de proteção contra surtos c.c. de 1000 V, classe 2, corrente nominal (corrente projetada, na qual é capaz de desviar para o aterramento de proteção) de 20 kA;
- ✓ Inversor FV 5 kW c.a., 220V c.a., e faixa de operação CC 80-550V, com dois MPPTs;
- ✓ 10 Módulos fotovoltaicos 540 Wp dispostos em duas strings de 5 módulos FV cada, totalizando 5,4 kWp de potência c.c. instalada.

DIAGRAMA UNIFILAR

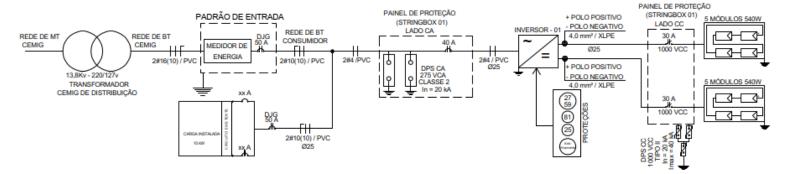


Figura 16: Diagrama unifilar da UC após a instalação da usina solar fotovoltaica. Simbologia adotada conforme Figura 12.

4.3 Projeto Elétrico: Diagrama Multifilar

A Figura 17 apresenta o diagrama multifilar da UC, com enfoque nas ligações elétricas entre os componentes da usina solar fotovoltaica. Este diagrama evidencia as conexões efetuadas no ato da instalação física do sistema.

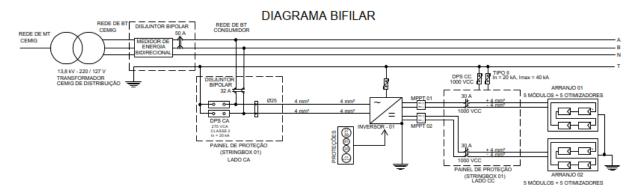
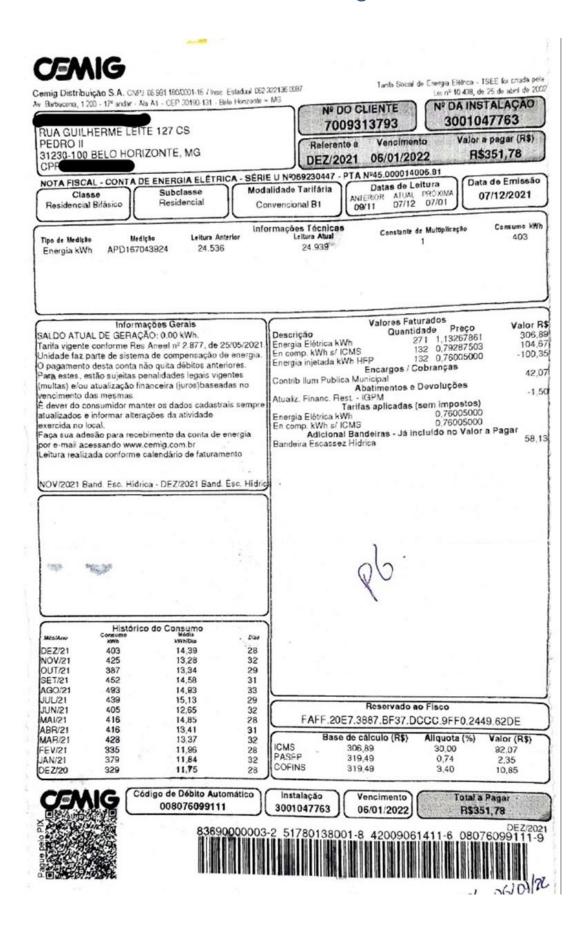


Figura 17: Diagrama multifilar da UC após a instalação da usina solar fotovoltaica. Simbologia adotada conforme Figura 12.


6- Referências Bibliográficas

- [1] GOOGLE MAPS, [Online]. https://www.google.com.br/maps/place/R.+Guilherme+Leite,+127+-+Alto+Cai%C3%A7aras,+Belo+Horizonte+-+MG,+31230-100/@-19.9056704,-43.9641,17z/data=!3m1!4b1!4m5!3m4!1s0xa6974a89e62345:0x30adea0a299aee88!8m2!3d-19.9056755!4d-43.9619113.
- [2] ANEEL, [Online]. Available: https://www.aneel.gov.br/a-aneel.
- [3] ANEEL, [Online]. Available: https://www.aneel.gov.br/prodist.
- [4] https://pt.wikipedia.org/wiki/Instituto_Nacional_de_Meteorologia. [Acesso em 06 02 2022].
- [5] CEMIG. [Online]. Available: https://www.cemig.com.br/usina-do-conhecimento/entenda-o-funcionamento-da-energia-solar/. [Acesso em 06 02 2022].
- [6] CRESESB, [Online]. Available: http://www.cresesb.cepel.br/index.php?section=sundata . [Acesso em 06 02 2022]
- [7] PHB. [Online]. Available: https://www.energiasolarphb.com.br/ [Acesso em 23 01 2022]
- [8] SOLARVIEW. [Online]. Available: https://solarview.zendesk.com/hc/pt-br/articles/360057858212-O-que-s%C3%A3o-VPL-e-TIR-. [Acesso em 26 01 202218].

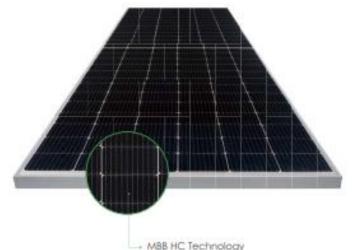
Anexo 1: Conta de energia do cliente

Anexo 2: Datasheet do módulo fotovoltaico

www.jinkosolar.com

Tiger Pro 72HC 530-550 Watt

MONO-FACIAL MODULE


P-Type

Positive power tolerance of 0~+3%

IEC61215(2016); IEC61730(2016) ISO9001:2015: Quality Management System

ISO 14001-2015: Environment Management System

Occupational health and safety management systems

Key Features

Mulfi Busbar Technology

Better light tropping and current collection to improve module power output and reliability.

Reduced Hot Spot Loss

Optimized electrical design and lower operating current for reduced hat spot loss and better temperature coefficient.

Longer Life-time Power Yield

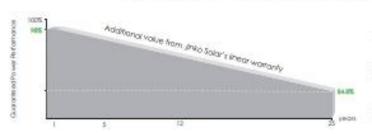
0.55% annual power degradation and 25 year linear

Durability Against Extreme Environmental

High salt mist and ammonia revistance.

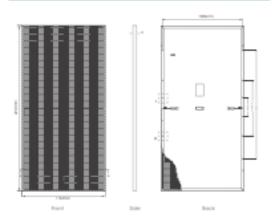
Enhanced Mechanical Load

Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

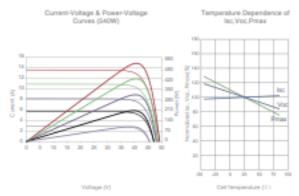


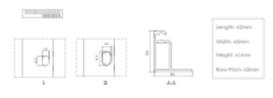
LINEAR PERFORMANCE WARRANTY

12 Year Product Warranty


25 Year Linear Power Warranty

0.55% Annual Degradation Over 25 years





Engineering Drawings

Electrical Performance & Temperature Dependence

Packaging Configuration 31 pcs/pallets, 62 pcs/stack, 620 pcs/ 40 HQ Container

Cell Type	P type Mono-crystaline
No. of cells	144 (6×24)
Dimensions	2274×1134×35mm (89.53×44.65×1.38 inch)
Weight	28.9 kg (63.7 lbs)
Front Glass	3.2mm, Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Allay
Junction Box	IP68 Rafed
Output Cables	TUV 1×4.0mm (+1: 400mm, F1: 200mm or Customized Length

SPECIFICATIONS										
Module Type	JKM530M-72HL4 JKM530M-72HL4-V		JKN535M-72HL4 JKN535M-72HL4-V		JKM540M-72HL4 JKM540M-72HL4-V		JKM545/ JKM545M	vi-72HL4 i-72HL4-V	JKW550M-72HL4 JKW550M-72HL4-V	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	530Wp	394Wp	535Wp	398Wp	540Wp	402Wp	545Wp	405Wp	550Wp	409Wp
Maximum Power Voltage (Vmp)	40.56V	37.84V	40.63V	37.91V	40.70V	38.08V	40.80V	38.25V	40.90V	38.42V
Maximum Power Current (Imp)	13.07A	10.42A	13.17A	10.50A	13.27A	10.55A	13.36A	10.60A	13.45A	10.65A
Open-circuit Voltage (Voc)	49.26V	46.50V	49.34V	46.57V	49.42V	46.65V	49.52V	46.74V	49.62V	46.84V
Short-circuit Current (Isc)	13.71A	11.07A	13.79A	11.14A	13.85A	11.19A	13.94A	11.26A	14.03A	11.33A
Module Efficiency STC (%)	20.55%		20.75%		20.94%		21.13%		21.33%	
Operating Temperature (*C)	-40°C~+85°C									
Maximum system valtage	1000/1500VDC (EC)									
Maximum series fuse rating	25A									
Power tolerance	0~+3%									
Temperature coefficients of Pmax	-0.35%/°C									
Temperature coefficients of Voc					-0.289	K/°C				
Temperature coefficients of Isc					0.048	K/*C				
Nominal operating cell temperatur	re (NOCT)				45±	20				

©2020 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

JKM530-550M-72HL4-(V)-F1-EN

Anexo 3: Datasheet do otimizador de potência

OTS4-A-O é a solução avançada de otimização modular ajustável de acordo ao orçamento e características do projeto, permitindo sua instalação parcial ou total no sistema. Ele traz novos recursos inteligentes ao sistema como a recuperação de perdas, monitoramento a nível de módulo e desligamento rápido. Esta tecnologia é compatível com todos os inversores PHB SOLAR e suporta módulos de até 600 Wp.

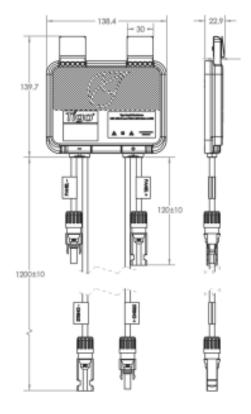
Instalação simples

Use os suportes em forma de presilhas para encaixe rápido na estrutura do módulo padrão ou remova-as para montagem em estrutura de fixação.

Comissionamento inteligente

Configure com o seu dispositivo móvel Android ou iOS.

- Otimização a nível modular para melhor rendimento energético e maior flexibilidade de projeto.
- Desligamento manual ou automático a nível modular.*
- Monitoramento a nível modular para acompanhamento da produção de energia e gerenciamento de sistemas.*



ESPECIFICAÇÕES DO TS4-A-O

-40 a +85°C (-40 a +185°F)
IP68
2.000 m
138,4 mm x 139,7 mm x 22,9 mm
520 g
80V
16~80V
14 A
600Wp
1,2 m (padrão)
MC4 (padrão)
Sem fio
30A

^{*}O Cloud Connect Advanced (CCA) e o TAP são necessários para monitoramento e desligamento no nivel modular com TS4-A-O.

Para informações técnicas:

Acesse support.tigoenergy.com

Para mais informações e assistência na seleção de produtos, use a ferramenta de desenho online da Tigo em tigoenergy.com/design

Anexo 4: Datasheet do inversor

Adequado para sistemas residenciais e comerciais. Possui design moderno e inovador que facilita o manuseio e instalação.

PHB5000T-DS INVERSOR FOTOVOLTAICO

Atende as Normas: ABNT NBR 16149; ABNT NBR 16150; ABNT NBR IEC 62116.

Possul a garantia de 7 anos* para defeito de fabricação. (consulte o termo de garantia).

Caracteristicas Principais:

- ✓ Alta Eficiência;
- Monitoramento incorporado;
- ✓ Design de baixo ruido e sem ventilador;
- String Box integrada, reduzindo tempo e área de instalação.

"Válido para aquisição a partir de julho de 2021.

EXCELENTE DESEMPENHO

- ✓ Efciência máxima de até 97,8%
- ✓ Eficiência do MPPT > 99.9%
- ✓ THDimenor que 3%
- √ Tensão de partida 80V
- ✓ DuploMPPT
- ✓ Compatível com módulos bifaciais

ALTA SEGURANÇA

- ✓ IP65 anti-poeirae à prova d'água
- √ Atende as normas brasileiras
- ✓ Atende as tensões módulo 8 PRODIST
- ✓ Registro do Inmetro:

PHB5000T-DS-002100/2021

PROJETO ORIENTADO PARA O CLIENTE

- ✓ LCD em portuguës
- ✓ Fácil e rápida instalação
- ✓ Peso 13 kg
- Adequado para instalações, residenciais e comerciais
- ✓ Interface de comunicação: RS485, USB e WI-FI
- ✓ String Box Integrada

Rua 53o Bernardino n° 12 Pq. Anhanguera - CEP: 05120-050 São Paulo - SP

(II) 3648-7830 contato@phb.com.br

Dados técnicos

Dados da Entrada CC						
Modelos	PHB5000T-DS					
Max. Tensão CC [V]	600					
Faixa de Operação SPMP [V]	80~550					
Tensão CC de Partida [V]	80					
Corrente CC Máxima [A]	13/13					
Número de Strings / MPPT	2/2					
Conector CC	MC4					
String Box integrada	Interruptor/ Seccionador CC (IEC60947-1 e IEC60947-3) e DPS CC Classe II (EN5053911)					
Da	dos de Saída CA					
Potência CA Nominal [W]	5000					
Max. Corrente CA [A]	22,8					

A PHB Solar mantém uma estrutura de equipamentos calibrados, "setups" de testes e técnicos treinados, para proporcionar aos seus clientes um rápido serviço de reparo.

Faixa de Operação CA	166,4~279,4Vca; 57,5~62Hz
THDi	<3%
Fator de Potência	Unitário (0.8 Capacitivo. / 0.8 Indutivo)
Conexão CA	Monofásico /Bifásico
	Eficiência
Max. Eficiência	97,8%
Eficiência SPMP	>99,9%

208, 220, 230, 240 e 254Vca; 60Hz

Segurança do Equipamento						
Monitoramento de corrente de fuga	Integrado					
Proteção Anti-ilhamento	AFD					
NBR (Normas Brasileiras)	ABNT NBR 16149, 16150 e ABNT NBR IEC 62116					
Normas de Referência						
	EN COOR OF THE COOR OF THE COOR OF THE					

EMC	EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4
Segurança	IEC 62109-1, AS3100
	Dados Gerais
Dimensões (L*A*P) [mm]	354*433*147
Peso Líquido [kg]	13
Ambiente de Operação	Interno ou Externo
Montagem	Fixado na parede
Temperatura de Operação	-25~60°C
Umidade relativa	0~100%
Altitude [m]	<4000m
Grau de Proteção IP	IP65
Topologia	Sem Transformador
Ventilação	Convecção Natural
Display	LCD (Portuguës)
Comunicação	USB / RS485 / Wi-Fi
Cor	Vermelho
Garantia [anos]	7/10/15/20/25(opcional)

Rua São Bernardino nº 12 Pq. Anhanguera - CEP: 05120-050 São Paulo - SP

Saída Nominal CA

(11) 3648-7830 contato@phb.com.b

Anexo 5: Tabela de compatibilidade do Inversor PHB ao Módulo da Jinko

				EI	NGENHARIA	PHB SOLAR	- JANEIRO/2	2022 V7.4 N	MONOFÁSICO	os						
									MÓDULO FV 525W/530W JINKO - BIFACIAL				MÓDULO FV 540W JINKO - 545W LONGI			
INVERSORES	REDE	MPPT/	STRING BOX	QDCA	STR	ING	то	TAL	STR	ING	TO	ΓAL	STR	ING	TO.	TAL
		STRING			MÍN	MÁX	MÍN	MÁX	MÍN	MÁX	MÍN	MÁX	MÍN	MÁX	MÍN	MÁX
PHB780-XS	220V F+F+PE / F+N+PE	1/1	INTEGRADO	84	02	02	02	02	02	02	02	02	02	02	02	02
PHB1500-XS	220V F+F+PE / F+N+PE	1/1	INTEGRADO	84	02	04	02	04	02	04	02	04	02	03	02	03
PHB1800N-XS	127V F+N+PE	1/1	INTEGRADO	112	02	05	02	05	02	04	02	04	02	04	02	04
PHB2900D-NS	127V F+N+PE	2/2	INTEGRADO	92	04	08	04	08	04	07	04	07	04	07	04	07
PHB3000N-XS	220V F+F+PE / F+N+PE	1/1	INTEGRADO	84	02	09	02	09	02	08	02	08	02	08	02	08
PHB5000T-DS	220V F+F+PE / F+N+PE	2/2	INTEGRADO	85	04	12	04	13	04	11	04	12	04	10	04	12
PHB6000D-NS	220V F+F+PE / F+N+PE	2/2	STB02/08	85	04	11	04	16	04	11	04	15	04	10	04	15
PHB6000-MS	220V F+F+PE / F+N+PE	3/3	INTEGRADO	110	04	11	04	18	04	10	04	17	04	10	04	16
PHB8500-MS	220V F+F+PE / F+N+PE	3/3	INTEGRADO	91	04	11	04	25	04	10	04	24	04	10	04	23

0	DC	E	RV	۸	rĉ	E

1. Os módulos da mesma string/MPPT devem possuir as mesmas condições de orientação, inclinação e quantidade de módulos.

2. O número mínimo de módulos por string permite atingir a tensão de partida do inversor.

4. A quantidade de módulos é indicativa. Cada caso deve ser analisado levando em conta as particularidades de cada projeto.

5. A decisão de melhor configuração do sistéma é de responsabilidade do projetista.

* Na utilização de médulos 525W/530W/540 JINKO, 545W LONGI e 550W JA no inversor PHB2900D-NS é necessário fazer uma única string.

