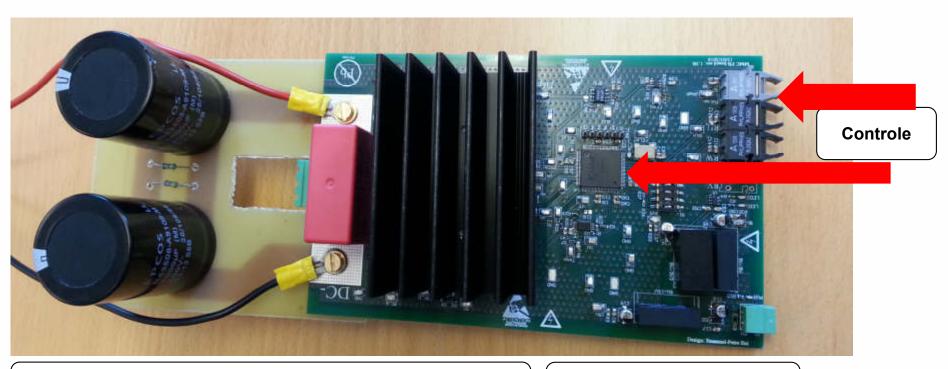


Eletrônica de Potência

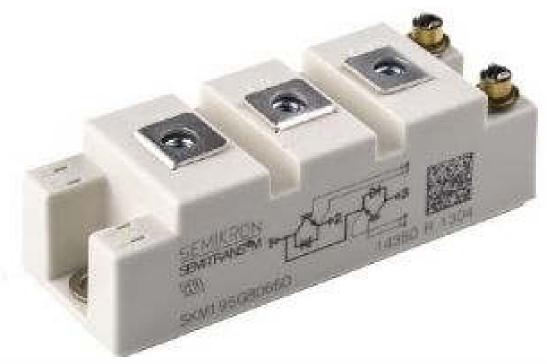
Aula 01 – Introdução

Parte 2 - Introdução à eletrônica de potência



Prof. Heverton Augusto Pereira heverton.pereira@ufv.br

Introdução


Potência

Eletrônica

Introdução

- Dispositivos de estado solido
- A eletrônica de potência baseia-se no chaveamento de dispositivos semicondutores de potência;

Fonte: https://www.ecotroncomponentes.com.br/componentes-eletronicos/modulo-igbt-skm195gb066d-semikron

Introdução

- Dispositivos de estado solido
- A eletrônica de potência baseia-se no chaveamento de dispositivos semicondutores de potência;

Fonte: Arquivo pessoal

• Aquecimento

Aplicações

- Iluminação
- Motores
- Fontes de alimentação
- Sistemas de propulsão de veículos
- Sistemas de transmissão em corrente contínua e alternada

• 1900

Retificador a arco de mercúrio

Retificador de tanque metálico

Retificador a válvula com grade de controle

Ignitron

Fanotron

Tiratron

http://www.r-type.org/pics/aagoo10.jpg

Jagadis Chandra Bose

Histórico

Also around 1906, American engineer Greenleaf W. Pickard invented a new type of diode. Pickard based his design on the earlier discovery that electricity can flow in only one direction through certain types of mineral crystals, such as silicon. By placing a silicon crystal between a metal base and a carefully placed fine wire, Pickard created a valve that could also be used to detect radio waves. This type of "cat's whisker" diode (so-named because of the fine wire used in it) became more popular after American H. C. Dunwoody patented a version of it that used a material called carborundum.

https://ethw.org/Diode?gclid=Cj0KCQjw_ez2BRCyARIsAJfg-ktBaGBjXNGOMVsjGOYLneFqqwoJkxkOAhgGPuqJU3-Lsy1xkKh95YkaAhHpEALw_wcB

https://www.computerhistory.org/siliconengine/semiconductor-rectifiers-patented-as-cats-whisker-detectors/

made them valuable during World War II when they were used in radar receivers. During the war years, thousands were manufactured, and in the course of research on semiconductors, Bell Laboratories scientists stumbled on a new type of diode. Russell Ohl, a Bell Labs metallurgist working with silicon samples discovered that one of his samples acted like a diode and—even more remarkable—produced electricity in response to light. He had invented a new type of diode that was also an efficient solar energy converter or "cell." The reason it worked either as a diode or as a solar cell was a mystery to the researchers. Eventually, however, they determined that the sample, which had been cut from a larger piece of silicon, had a region that contained high levels of a certain kind of impurity. The area where this region joined the rest of the silicon formed a "junction." This junction had something to do with the diode action of the device. The junction and the different regions of impurity also allowed it to respond to light. It would be many years before physicists explained why this worked, but in the meantime, semiconductor junction diodes went into production, first as solar cells and eventually as ordinary diodes.

• 1948 Transistor de silício (Bell Telephone)

<u>John Bardeen</u>, William Bradford Shockley, e Walter Houser Brattain

Prémio Nobel da Física em 1956

 1956
 Transistor PNPN com disparo (tiristor ou retificador controlado de silício SCR)

• 1958 Tiristor comercial (General Electric)


```
Designate by the numbers 1, 2 and 3, the order of
ference for the cames listed below
        Saniconductor Trible
        Burface States Tracks
        Crystal Triods
        Solid Triots
        Transletur.
```


https://www.youtube.com/watch?v=LRJZtuqCoMw

Fonte: https://www.youtube.com/watch?v=6yoJ6qFD_LA

Considerações parciais

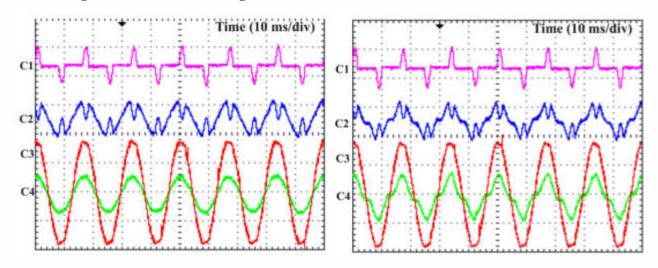
• Aplicações: energia renovável, transmissão de energia, carro elétrico

https://www.windpowerengineering.com/liquid-cooled-converter-handles-for-3-to-8-mva/

Considerações parciais

• Aplicações: energia renovável, transmissão de energia, carro elétrico

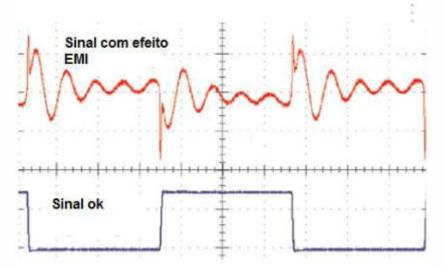
2×14 IGBTs in parallel is one leg of inverter—All packaged in discrete TO247 – From Tesla Roadster and Model S inverter


Considerações parciais

- Aplicações: energia renovável, transmissão de energia, carro elétrico
- Limitação da capacidade de dispositivos baseados em silício (níveis de potência e frequência de chaveamento)
- Novos dispositivos baseados em carbeto de silício (3ª revolução)
- Outras tecnologias como nitreto de Gálio

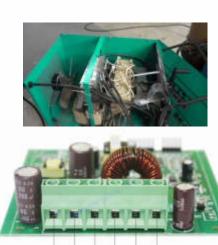
Pontos negativos

- Qualidade da energia
- Introdução de harmônicos no sistema elétricos de potência
- Filtros passivos adicionais para reduzir as harmônicas
- Filtros passivos inserem pontos de ressonância



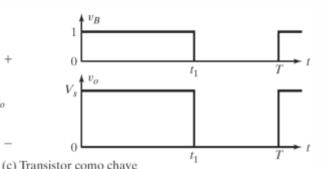
XAVIER, LUCAS S.; CUPERTINO, ALLAN F.; DE RESENDE, JOSÉ T.; MENDES, VICTOR F.; PEREIRA, HEVERTON A. . Adaptive current control strategy for harmonic compensation in single-phase solar inverters. Electric Power Systems Research (Print), v. 142, p. 84-95, 2017.

Pontos negativos


- Interferência eletromagnética
- Conversores de potência podem causar interferência em radiofrequência por causa da radiação eletromagnética
- Isso pode afetar o circuito de comando
- Necessidade de aterramento ou blindagem

Tipos de Circuitos

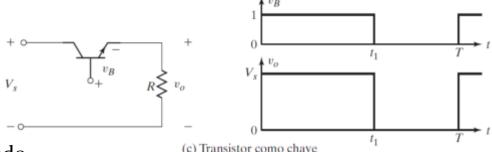
- Retificadores a diodo
 - Exemplo: Máquina de solda
- Conversores CC-CC
 - Controlador de carga
- Conversores CC-CA
 - Inversor fotovoltaico
- Conversores CA-CC
 - Carregador de carro elétrico
- Conversores CA-CA
 - Guindastes



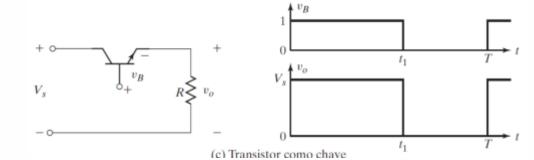
Especificação das chaves

- Quando ligada
 Capacidade de conduzir uma grande quantidade de corrente
 Uma baixa queda de tensão
 Uma baixa resistência de condução
- Quando desligada

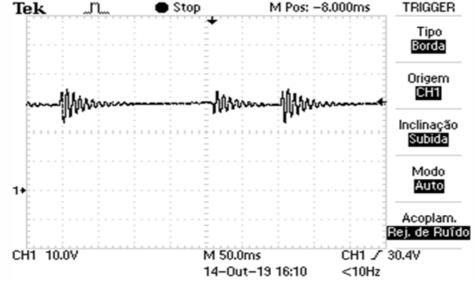
 Capacidade de suportar uma alta tensão direta ou reversa
 Uma baixa corrente de fuga no estado desligado


 Uma alta resistência
- Durante a comutação
 Capacidade de ligar e desligar instantaneamente
 Permitir chaveamento em altas frequências
 Pouco tempo de atraso
 Pequeno tempo de subida
 Pequeno tempo de armazenamento
 Pequeno tempo de descida

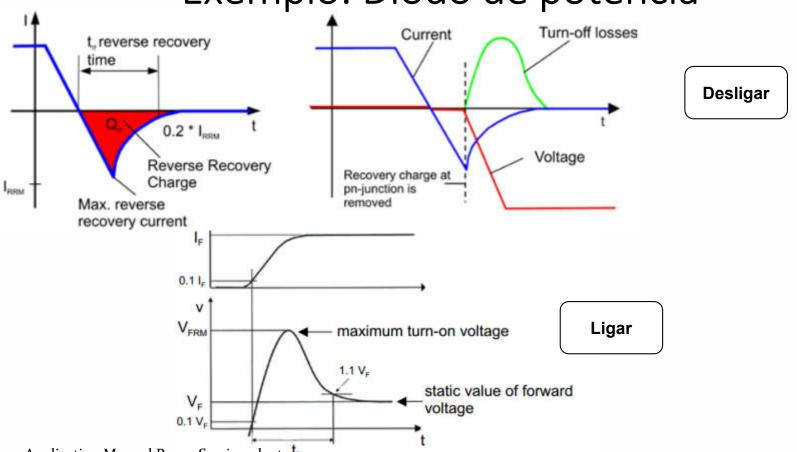
Especificação das chaves


- Para ligar e desligar
 Baixa potência do sinal de comando
 Baixa tensão de comando
 Baixa corrente de comando
- Abertura e fechamento --Devem ser controláveis através de sinais de comando
 Requerer apenas um sinal de pulso
- Elevado dv/dt
- Elevada di/dt
- Impedância térmica baixa
- Suportar corrente de falha

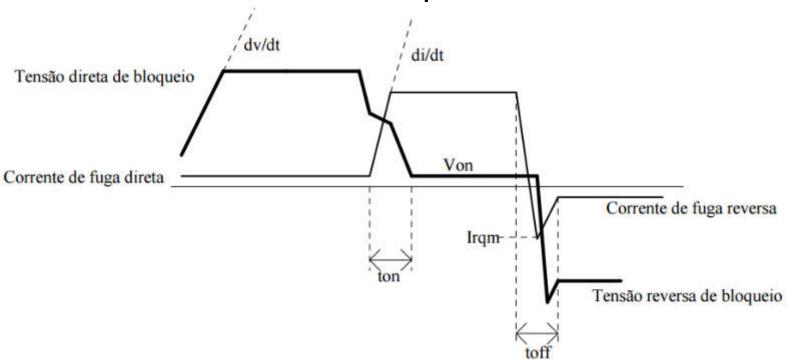
Especificação das chaves


- Coeficiente de temperatura positivo Favorece operação em paralelo de chaves
- Preço baixo

Especificação das chaves -Realidade


- Atraso de subida
- Atraso de armazenamento
- Atraso de descida
- Energia dissipada na condução
- Energia dissipada na comutação
- Tensão em condução mínimo 1V
- Frequência de chaveamento limitada
- Acionamento consome energia

Geralmente as perdas de comutação são as mais altas!


Exemplo: Diodo de potência

Semikron: Application Manual Power Semiconductors

Exemplo: Tiristor

 $http://www.dsce.fee.unicamp.br/{\sim}antenor/pdffiles/eltpot/cap1.pdf$

Como escolher a chave de potência?

- Precisamos sempre de um datasheet
- Tensão
 Tensão de pico
 Tensão reversa
 Queda de tensão durante a condução
- Corrente
 Corrente média, RMS
 Corrente de pico
 Corrente de fuga
- Frequência de chaveamento
- Capacidade di/dt
- Capacidade dv/dt

IDW100E60

Fast Switching Emitter Controlled Diode

Features:

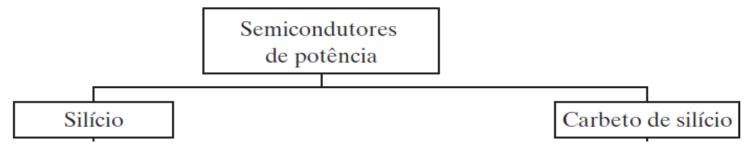
- 600V Emitter Controlled technology
- Fast recovery
- Soft switching
- Low reverse recovery charge
- Low forward voltage
- 175°C junction operating temperature
- Easy paralleling
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models: http://www.infineon.com

Applications:

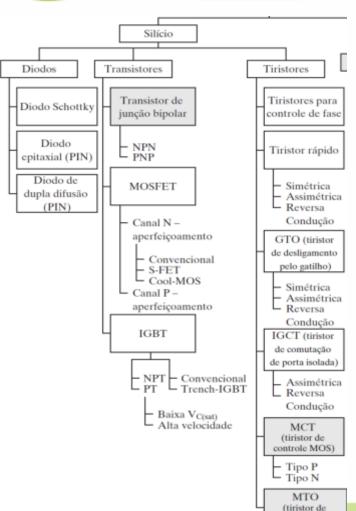
- Welding
- Motor drives

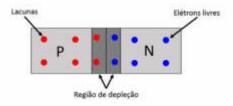
Туре	Viscou	4	V _{F,Tj=2010}	Times	Marking	Package
IDW100E60	600V	100A	1.65V	175°C	D100E60	PG-T0247-3

All and income Planting

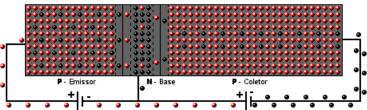

Como escolher a chave de potência?

- Temperatura de operação
- Resistência térmica da junção até o encapsulamento

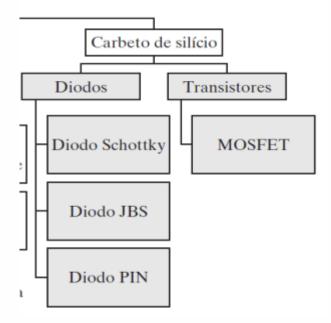

Parameter	Symbol	Value	Unit	
Repetitive peak reverse voltage	V _{RRM}	600	V	
Continuous forward current	12		7	
T _C = 25°C	21	150	A	
T _C = 90°C	I _F	104		
T _C = 100°C		96		
Surge non repetitive forward current	i i	400	A	
$T_C = 25$ °C, $t_p = 10$ ms, sine halfwave	/FSM			
Maximum repetitive forward current	The same of the sa	300	A	
$T_C = 25^{\circ}\text{C}$, t_0 limited by $t_{i,\text{max}}$, $D = 0.5$	IFRM	300		
Power dissipation	15	F144094141		
T _C = 25°C	Ptot	375	w	
T _C = 90°C		212		
T _C = 100°C		198	18	
Operating junction temperature	T_{i}	-40+175	Ü	
Storage temperature	Tstg	-55+150	-°C	
Soldering temperature 1.6mm (0.063 in.) from case for 10 s	Ts	260		



Dispositivos semicondutores de potência

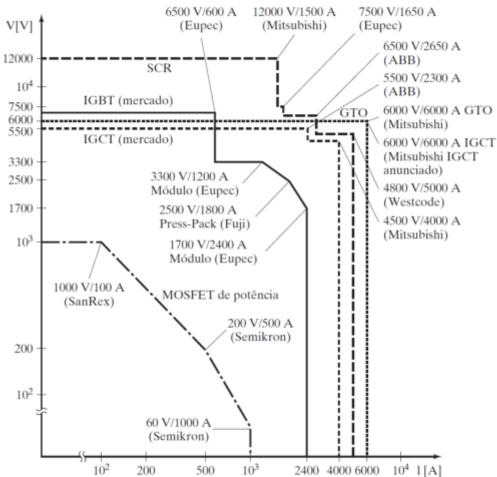


http://www.vandertronic.com/index.php/diodos/?print=print


http://eletronicaemcasa.blogspot.com.br/2013/04/como-funciona-um-transistor-bipolar.html

http://www.petervis.com/GCSE_
Design_and_Technology_Electron
ic_Products/GCSE_Electronics_Ci
rcuit_Symbols/thyristor/thyristor.
html

(I) were personal and



Dispositivos semicondutores de potência

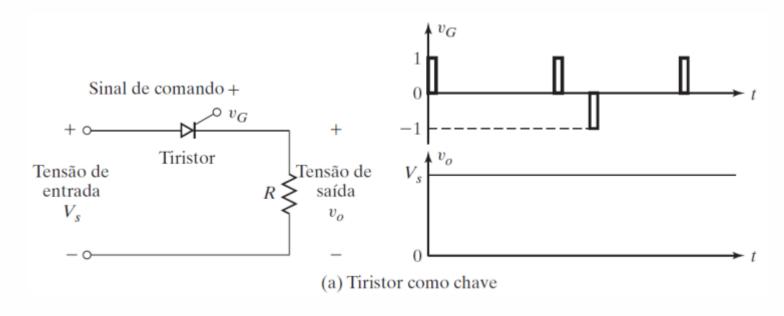
S. Bernet, "Recent developments of high power converters for industry and traction applications," in *IEEE Transactions on Power Electronics*, vol. 15, no. 6, pp. 1102-1117, Nov 2000.

S. Bernet, "Recent developments of high power converters for industry and traction applications," in *IEEE Trans. on Power Electronics*, vol. 15, no. 6, pp. 1102-1117, Nov 2000.

Dispositivos semicondutores de potência

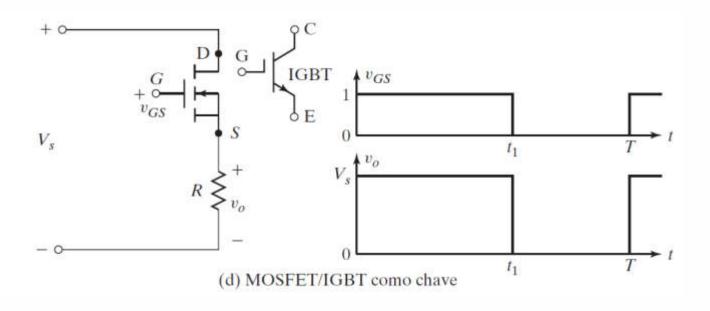
Tipo de dispositivo	Dispositivo		Especificação de tensão/corrente	Frequência máxima (Hz)	Tempo de chaveamento (µs)	Resistência em condução (Ω)
Diodos de potência	Diodos de potência	Uso geral	4000 V/4500 A	1 k	50-100	0,32 m
			6000 V/3500 A	1 k	50-100	0,6 m
			600 V/9570 A	1 k	50-100	0,1 m
			2800 V/1700 A	20 k	5–10	0,4 m
		Alta velocidade	4500 V/1950 A	20 k	5–10	1,2 m
			6000 V/1100 A	20 k	5-10	1,96 m
			600 V/17 A	30 k	0,2	0,14
		Schottky	150 V/80 A	30 k	0,2	8,63 m
Transistores de potência	Transistores bipolares		400 V/250 A	25 k	9	4 m
			400 V/40 A	30 k	6	31 m
			630 V/50 A	35 k	2	15 m
		Darlington	1200 V/400 A	20 k	30	10 m
	MOSFETs	Discreto	800 V/7,5 A	100 k	1,6	1
	COOLMOS	Discreto	800 V/7,8 A	125 k	2	1,2 m
			600 V/40 A	125 k	1	0,12 m
			1000 V/6,1 A	125 k	1,5	2

S. Bernet, "Recent developments of high power converters for industry and traction applications," in *IEEE Transactions on Power Electronics*, vol. 15, no. 6, pp. 1102-1117, Nov 2000.


Características Elétricas

Dispositivos	Símbolos	Características
Diodo	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} I_D & \\ \hline & 0 & \\ \hline \end{array} $ Diodo
Tiristor	$ \overset{I_A}{{{}{}{}{}{}{}$	$ \begin{array}{c c} I_A & Disparado pelo gatilho \\ \hline & V_{AK} \end{array} $
SITH	G A ○ → N ← O K	
GTO	, G	I _A Disparado pelo gatilho
	$ \overset{I_A}{\wedge} \overset{V_{AK}}{\vee} \overset{\circ}{-} \overset{\circ}{\mathrm{K}} $	V_{AK}
MCT	$T_{G}^{\circ K}$	
MTO	Gatilho ligar desligar Anodo	Tiristores

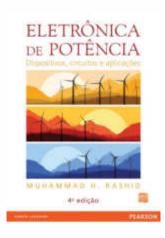
S. Bernet, "Recent developments of high power converters for industry and traction applications," in *IEEE Transactions on Power Electronics*, vol. 15, no. 6, pp. 1102-1117, Nov 2000.



Características de Controle

Características de Controle

S. Bernet, "Recent developments of high power converters for industry and traction applications," in *IEEE Transactions on Power Electronics*, vol. 15, no. 6, pp. 1102-1117, Nov 2000.



Agora é com vocês!

Capítulo 1 do Livro

M. H. Rashid: Eletrônica de Potência: Dispositivos, circuitos e aplicações. 4ª. Edição, Pearson, 2014

Obrigado!

Heverton Augusto Pereira

Prof. Departamento de Engenheira Eletrica | UFV

Coordenador da Gerência de Especialistas em Sistemas Elétricos de Potência | Gesep

Membro do Programa de Pós-Graduação em Engenharia Elétrica | PPGEL/CEFET-MG

E-mail: heverton.pereira@ufv.br