

Prof. Allan Fagner Cupertino afcupertino@ieee.org

22/08/2020

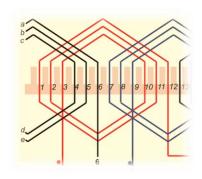
Sumário

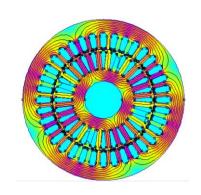
☐ Campo magnético

☐ Propriedades magnéticas dos materiais

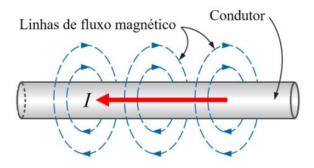
☐ Linhas de campo magnético

☐ Fluxo magnético


☐ Densidade de fluxo magnético

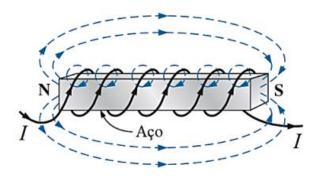


Campo magnético de algumas estruturas

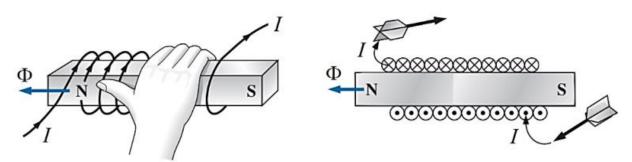


Exemplo 1: Fio Condutor

Determinar a direção e sentido do campo magnético de fio condutor.



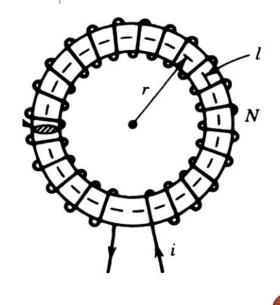
Boylestad, R. L. . "Introdução a análise de circuitos".


$$H = \frac{i}{2\pi r}$$

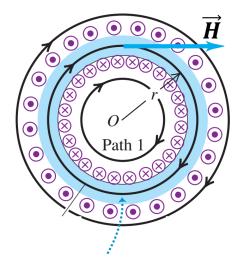
Exemplo 2: Solenóide

Determinar a direção e sentido do campo magnético de um solenóide.

Boylestad, R. L. . "Introdução a análise de circuitos".



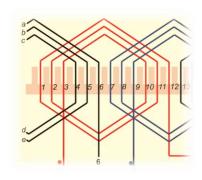
Boylestad, R. L. . "Introdução a análise de circuitos".

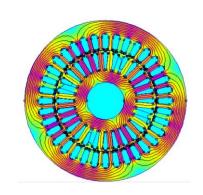

Exemplo 3: Toróide

Determinar a direção do campo magnético de um toróide.

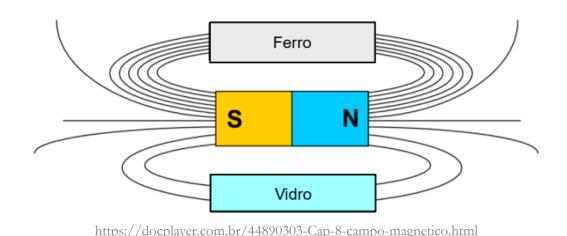
P. C. Sen. "Principles of Electrical Machines and Power Electronics"..

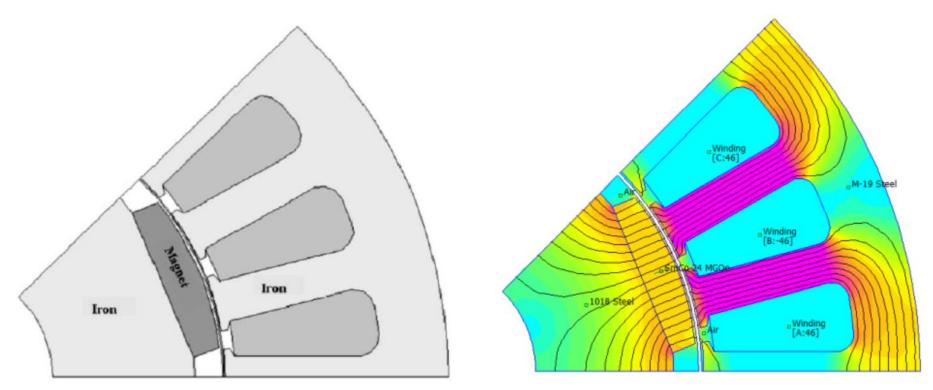
Young and Freedman. "Física III: Eletromagnetismo"...


http://www.magmattec.com.br/indutores



Propriedades magnéticas dos materiais

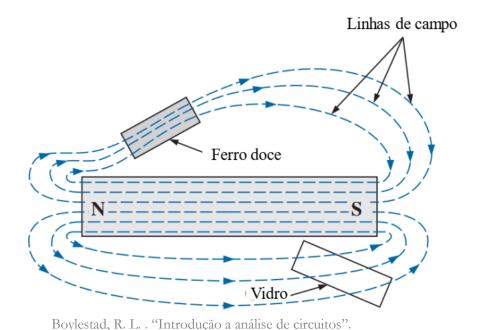



Magnetização dos materiais

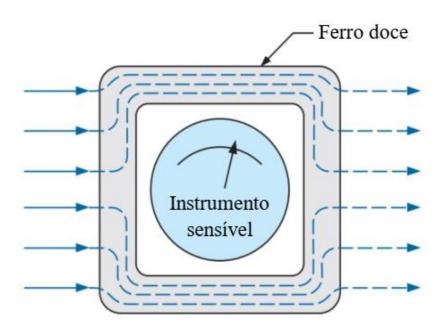
- ☐ Intensidade de campo magnético *H*: Depende da distribuição de corrente (valor da corrente e geometria do dispositivo);
- \square Desta forma, H não depende do meio (material);
- ☐ Contudo, quando um campo magnético externo entra em um determinado material, a densidade de linhas de campo pode mudar.

Magnetização dos materiais

- Exemplo: Distribuição das linhas de campo em uma máquina Elétrica;
- ☐ Note que o cobre e o ferro tem propriedades bastante diferentes.


http://www.femm.info/wiki/RotorMotion

Permeabilidade magnética μ


- Propriedade que mede a capacidade de um material de concentrar as linhas de campo magnético geradas por uma fonte externa;
- ☐ Unidade: Henrys por metro (H/m);

Cuidado para não confundir com intensidade de campo magnético H;

Exemplo de aplicação: Blindagem

Boylestad, R. L. . "Introdução a análise de circuitos".

http://rmshield.med.br/blindagem_rf/

Permeabilidade magnética relativa μ_r

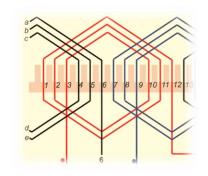
🗖 É usual apresentar valores de permeabilidade relativa, que é dada por:

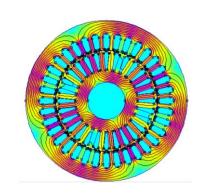
$$\mu_r = \frac{\mu}{\mu_0}$$

- \square μ é a permeabilidade magnética do material;
- $\square \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ é a permeabilidade magnética do vácuo.

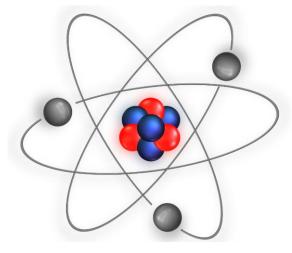
Classificação dos materiais quanto a permeabilidade

Tabela 1.1 – Tabela com descrição dos tipos de materiais magnéticos.


Tipo de material	Descrição e características					
FERROMAGNÉTICO	- Apresenta uma magnetização espontânea e totalmente independente de campos					
	magnéticos externos.					
	- a sua permeabilidade (μ) é muito maior a do vácuo.					
	- a concentração das linhas de campo que o intercepta é forte (ver a Figura 1.19).					
	- Exemplos: Cobalto (μ_r = 60); Níquel (μ_r = 50); Ferro fundido (μ_r = 60); Aço (μ_r					
	= 500 a 5000) e ligas como o Alnico e o Permalloy.					
PARAMAGNÉTICO	- Este material concentra ligeiramente as linhas de fluxo que o intercepta.					
	- Apresenta a permeabilidade ligeiramente maior que a do vácuo.					
	- Exemplos: oxigênio, sódio, sais de ferro e de níquel.					
DIAMAGNÉTICO	- Possui a permeabilidade menor que a do vácuo, ou seja, a sua permeabilidade					
	relativa é menor que 1.					
	- Este tipo de material afasta ligeiramente as linhas de fluxo que o intercepta.					
	- Exemplos: vidro, água, bismuto, antimônio, cobre, zinco, mercúrio, ouro e					
	prata.					

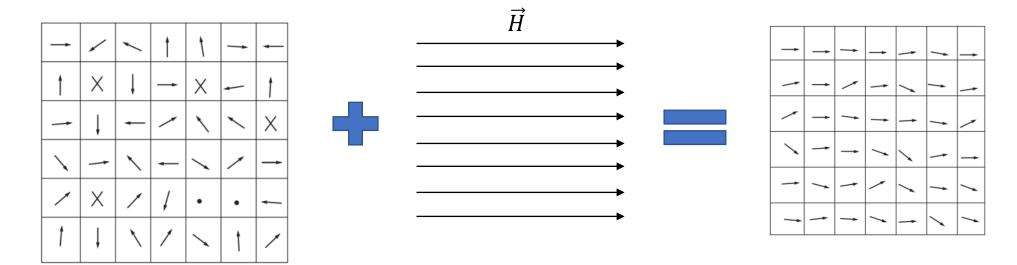


Processo de magnetização



Magnetização dos materiais

- ☐ Um material é constituído de átomos;
- ☐ Cada átomo apresenta elétrons em movimento;
- ☐ Carga elétrica + velocidade → Campo Magnético;
- ☐ Usualmente denominado domínio.


https://conhecimentocientifico.r7.com/modelo-atomico-de-bohr-2/

-	/	/	†	†	†	-
†	X	↓	-	X	-	†
→	1	—	_	\	/	X
/	†	/	+	/	/	-
/	X	1	<i>ļ</i>	•	•	←
1	1	\	1	\	1	/

S. J. Chapman. "Fundamentos de Máquinas Elétricas"..

Magnetização

- Magnetização → Interação dos domínios com o campo magnético externo;
- Dependendo do tipo de material, os domínios podem se alinhar, manter-se na posição inicial ou se opor ao campo magnético externo;
- ☐ Exemplo de interação:

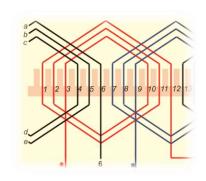
S. J. Chapman. "Fundamentos de Máquinas Elétricas".

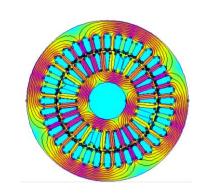
Classificação dos materiais quanto ao alinhamento

☐ Material ferromagnético mole: A maioria dos domínios voltam a se desorientar se a fonte de campo externa é removida;

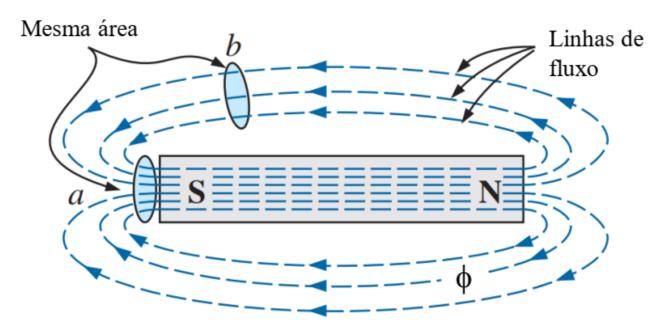
https://www.magmattec.com.br/materiais-magneticos-e-aplicacoes/indutores-toroidais-qual-o-material-mais-indicado-para-cada-aplicacao

☐ Material ferromagnético duro: A maioria dos domínios mantém-se orientados mesmo se a fonte de campo externa é removida;


https://www.magtek.com.br/imas/neodimio-ferro-boro/



Fluxo magnético e densidade de fluxo magnético

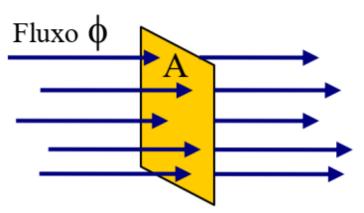


Linhas de campo magnético

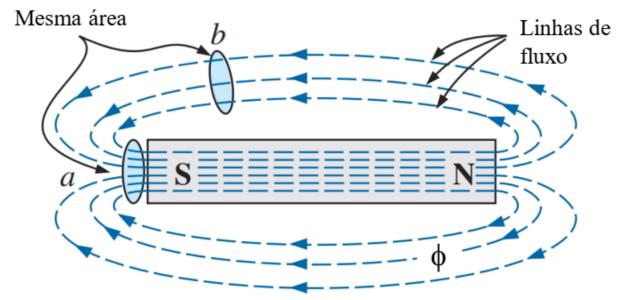
- ☐ Curvas fechadas que descrevem o comportamento espacial do campo magnético;
- ☐ Materiais ferromagnéticos concentram as linhas de campo magnético, visto que apresentam altas permeabilidades.

Boylestad, R. L. . "Introdução a análise de circuitos".

Densidade de fluxo magnético


- \square O conjunto de todas as linhas de campo geradas por uma fonte de campo magnético é definido como fluxo magnético ϕ ;
- ☐ A unidade de fluxo magnético é o Weber (Wb)
- lacktriangle Defini-se a densidade de fluxo magnético B (ou indução magnética) como o fluxo magnético por unidade de área, isto é:

$$B = \frac{\phi}{A}$$


☐ A unidade de densidade de fluxo é o Tesla (T).

Densidade de fluxo magnético

☐ Interpretação física:

https://docplayer.com.br/44890303-Cap-8-campo-magnetico.html

Boylestad, R. L. . "Introdução a análise de circuitos".

Relação entre B e H

- \square Uma fonte de campo magnético gera um campo magnético H;
- Desta forma, linhas de campo magnético distribuem-se no espaço;
- ☐ As linhas de campo podem se condensar dependendo do tipo de material;
- \square Portanto, existe uma relação entre B, H e o material;
- Esta relação é dada por:

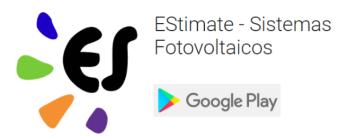
Ou:

$$B = \mu H$$

$$B = \mu_{\rm r} \mu_0 H$$

Obrigado pela Atenção

www.gesep.ufv.br


https://www.facebook.com/gesep

https://www.instagram.com/gesep_vicosa/

https://www.youtube.com/channel/UCe9KOSGORXh hDBIcxMU2Nw

https://play.google.com/store/apps/details?id=br.developer.gesep.estimate