

Semicondutores

Prof. Allan Fagner Cupertino afcupertino@ieee.org

Conteúdo

Aula	Conteúdo
Aula 1	Conceitos Básicos de Semicondutores
Aula 2	Diodos de potência
Aula 3	Associação de diodos e circuitos RLC chaveados
Aula 4	Retificadores a diodos
Aula 5	Transistores de potência - parte 1
Aula 6	Transistores de potência - parte 2
Aula 7	Conversores c.c./c.c.
Aula 8	Tiristores
Aula 9	Retificadores controlados
Aula 10	Conversores c.c./c.a.
Aula 11	Conversores c.a./c.a.
Aula 12	Conversores ressonantes

Sumário

Ionização térmica;

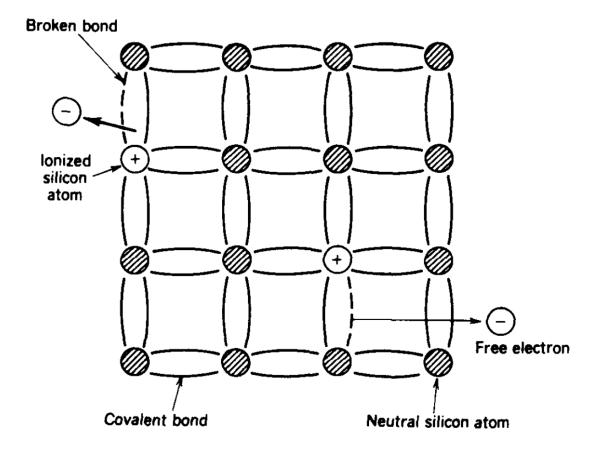
Dopagem;

Recombinação e controle de lifetime;

Mecanismos de deriva e difusão;

Ionização de impacto e avalanche.

Ionização Térmica



Ionização térmica

Vibrações térmicas podem ocasionar quebra as ligações covalentes!

Fonte: Mohan, Undeland and Robbins: Power Electronics: Converters, Applications and Design. 2nd. Edition, John Wiley, 1994.

Ionização térmica - Semicondutor Intrínseco

- \square Densidade de elétrons livres: n; Densidade de lacunas livres: p
- Num semicondutor intrínseco: $p = n = n_i(T)$ que é a densidade de portadores intrínsecos do material. Além disso:

$$n_i(T) \approx \sqrt{C \exp\left(-\frac{qE_g}{kT}\right)}$$

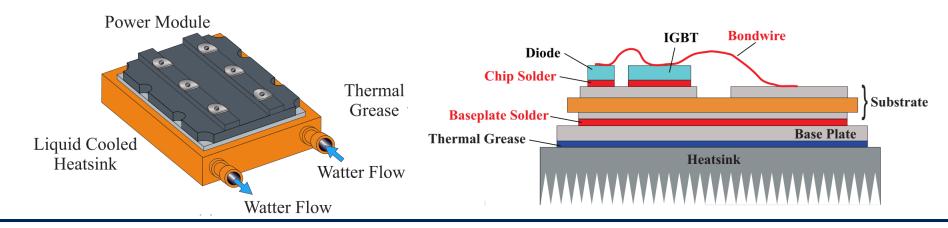
- $k = 1.4 \times 10^{-23} J/K$
- E_g é a banda de energia (1.1 eV para o silício)
- $q = 1.6 \times 10^{-19} C$
- T é a temperatura
- *C* é uma constante de proporcionalidade

Vídeo Recomendado: https://www.youtube.com/watch?v=LRJZtuqCoMw

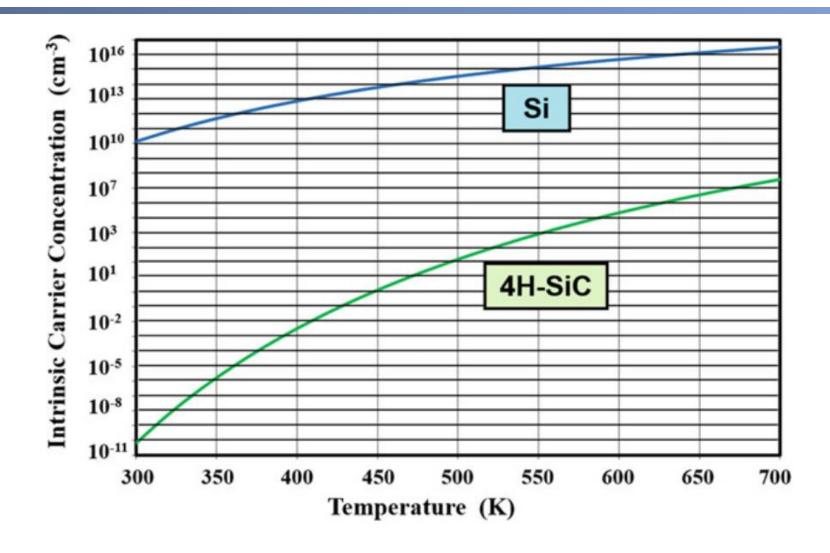
Corrente Elétrica e Condutividade

☐ Metais (ouro, platina, prata, cobre):

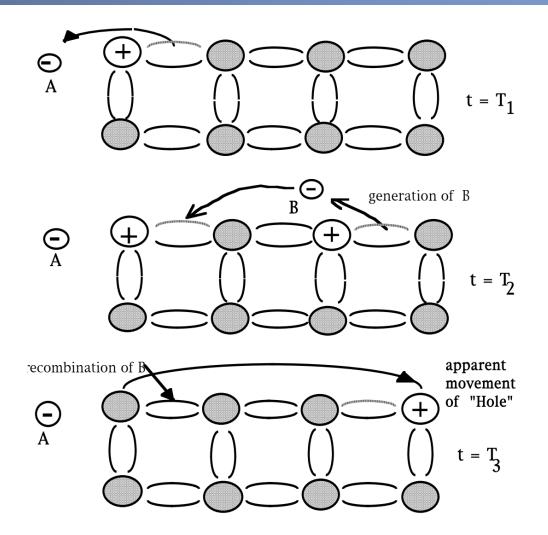
$$n_i \approx 10^{23} \ cm^{-3} \ {\rm e} \ \sigma < 10^7 \frac{cm}{\Omega}$$


Isolantes (dióxido de silício, nitreto de silício, óxido de alumínio):

$$n_i < 10^3 \ cm^{-3} \ {\rm e} \ \sigma < 10^{-10} \frac{cm}{\Omega}$$


Semicondutores (silício, arseneto de gálio, diamante, etc):

$$10^8 < n_i < 10^{19} \ cm^{-3} \ \ e \ 10^{-10} < \sigma < 10^4 \ \frac{cm}{\Omega}$$

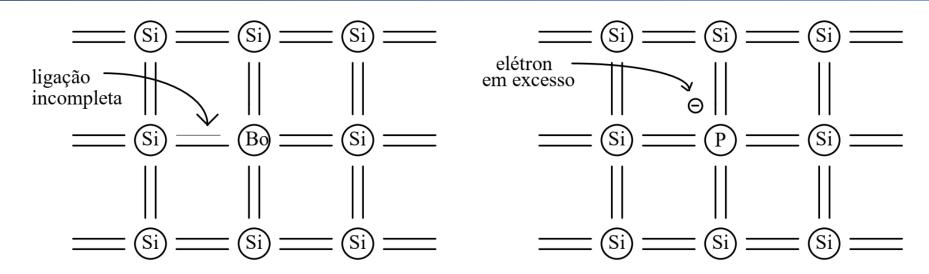

Os módulos de potência modernos são constituídos de um conjuto de materiais!!!!

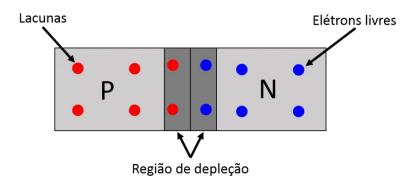
Ionização térmica – Semicondutor Intrínseco

Elétrons e lacunas: movimento aparente

Fonte: Mohan, Undeland and Robbins: Power Electronics: Converters, Applications and Design. 2nd. Edition, John Wiley, 1994.

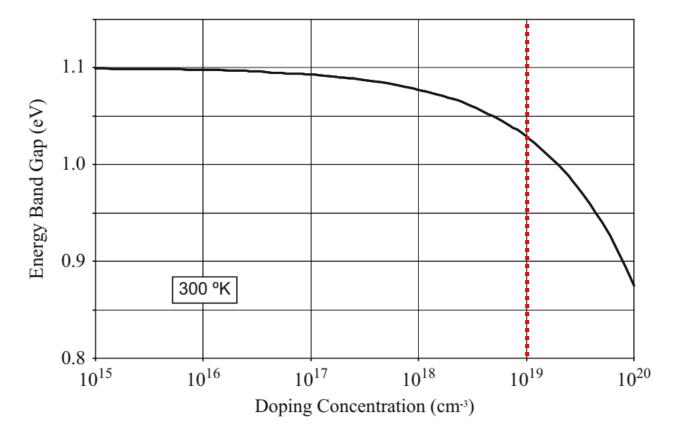
Dopagem




Dopagem

Na camada chamada de P, adiciona-se materiais aceitadores de elétrons (3 elétrons na camada de valência: boro, alumínio);
Na camada chamada de N, adiciona-se materiais doadores de elétrons (5 elétrons na camada de valência: fósforo);
No material tipo P, as lacunas são os portadores majoritários e os elétrons são os portadores minoritários;
No material tipo N, os elétrons são os portadores majoritários e as lacunas são os portadores minoritários;
Formada por fusão, difusão ou crescimento epitaxial.
IMPORTANTE: Note que os materiais são eletricamente neutros (o número de prótons é igual ao número de elétrons).

Dopagem do material semicondutor


Fonte: http://vm1-devel.fee.unicamp.br/feec/node/493

http://www.vandertronic.com/index.php/diodos/?print=print

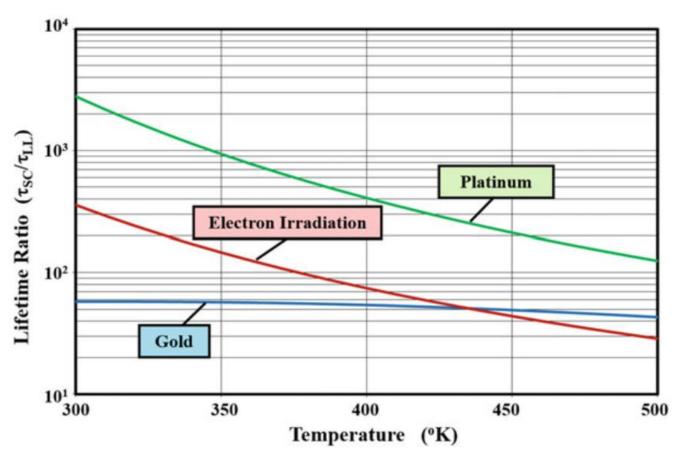
Efeito da dopagem

 \square A dopagem geralmente é limitada a concentrações da faixa de $10^{19}\,cm^{-3}$ que é pequena comparada a densidade de átomos (em torno de $10^{23}\,cm^{-3}$);

Recombinação e controle De *Lifetime*

Recombinação

- Portadores minoritários são gerados em equilíbrio térmico;
- A recombinação de pares lacuna elétron é esperada;
- Portadores podem ser capturados pelas impurezas ou defeitos na estrutura cristalina;
- ☐ Fenômeno complexo de ser analisado. Abordagem simplificada:


$$\frac{d(\delta n)}{dt} = -\frac{\delta n}{\tau}$$

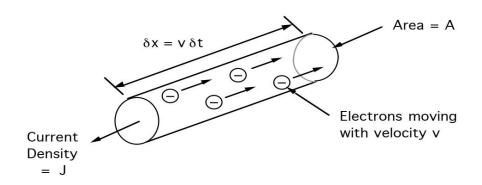
- δn é o excesso de carga;
- τ é a constante de tempo de vida dos portadores minoritários (*lifetime*).

Recombinação

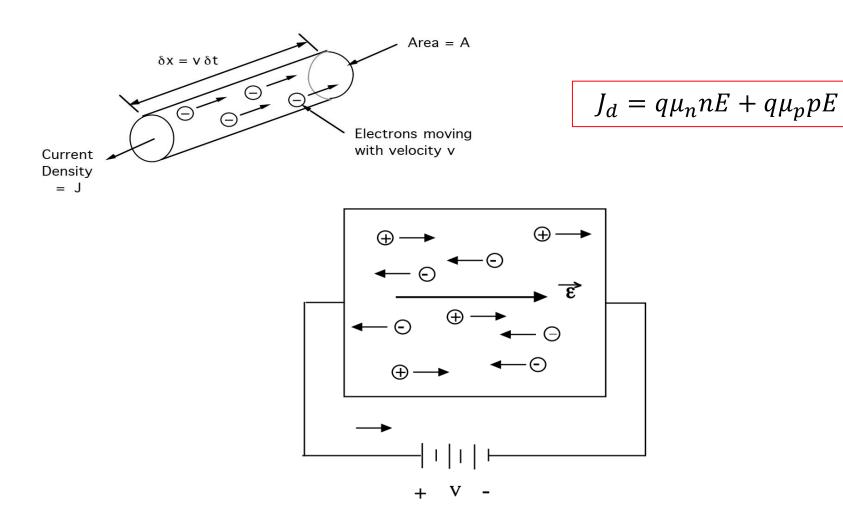
lacksquare aumenta com a temperatura (isto aumenta o tempo de comutação de dispositivos bipolares).
☐ Afeta as perdas de condução de dispositivos bipolares;
☐ Afeta a corrente de saturação reversa do componente;
☐ Controle de <i>lifetime</i> é importante → criação de centros de recombinação!
☐ Inserção de platina, ouro ou irradiação eletrônica (CAL).

Controle de lifetime

☐ Maiores valores de *lifetime* para indicam melhores performances de condução de dispositivos bipolares e maiores corrente de fuga.

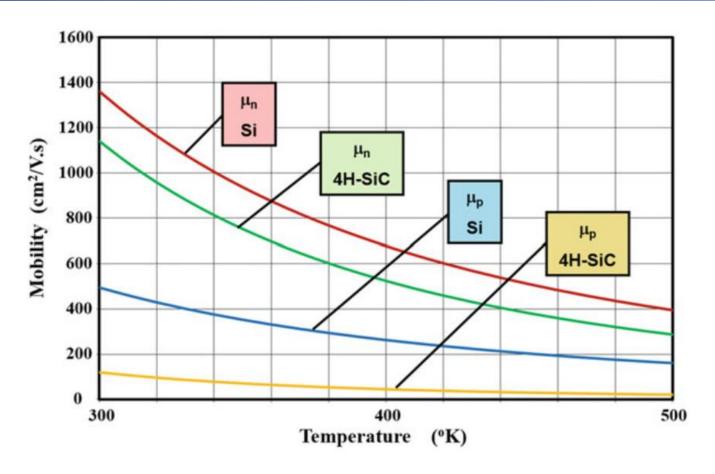

Mecanismos de Deriva e Difusão

Deriva e difusão

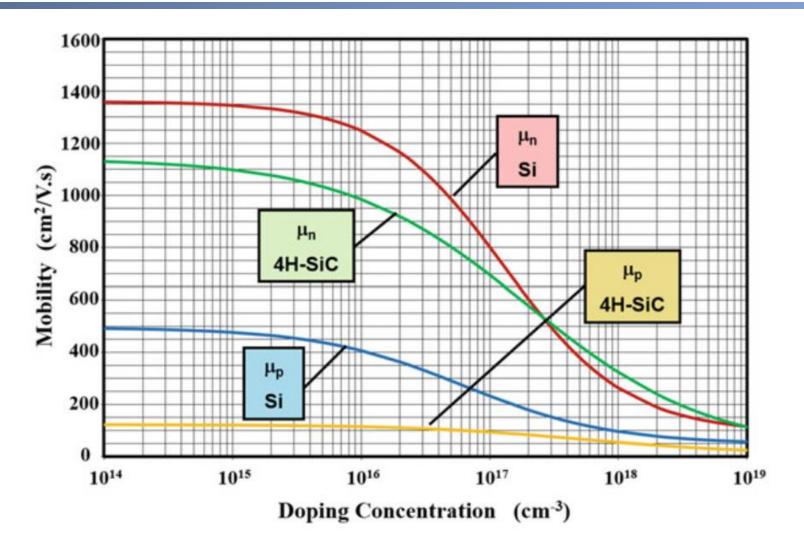

 \square Para campos elétricos inferiores a $10^4 \frac{v}{cm}$, pode-se escrever que:

$$v_D = \mu E$$

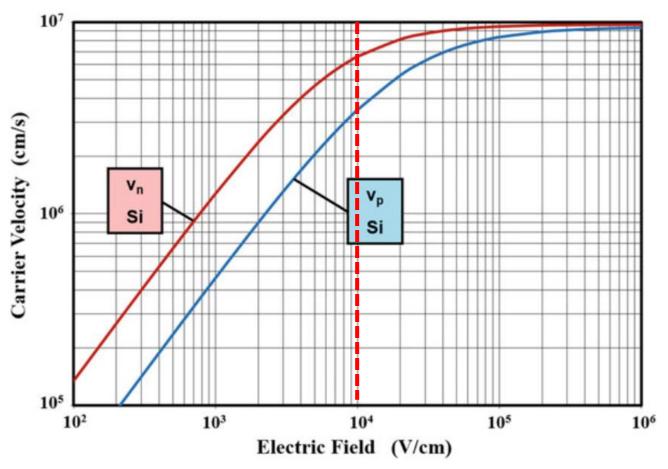
- *E* é o campo elétrico aplicado
- μ_n e μ_p são as mobilidades dos elétrons e das lacunas no material
- A mobilidade das lacunas e dos elétrons são diferentes!


Fonte: Mohan, Undeland and Robbins: Power Electronics: Converters, Applications and Design. 2nd. Edition, John Wiley, 1994.

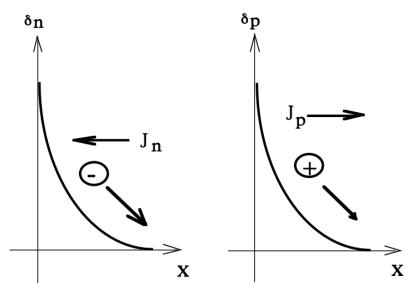
Densidade de corrente de deriva


Fonte: Mohan, Undeland and Robbins: Power Electronics: Converters, Applications and Design. 2nd. Edition, John Wiley, 1994.

Mobilidade dos portadores


- ☐ Por que a mobilidade cai com a temperatura?
- Por que a mobilidade do elétron e da lacuna são diferentes?

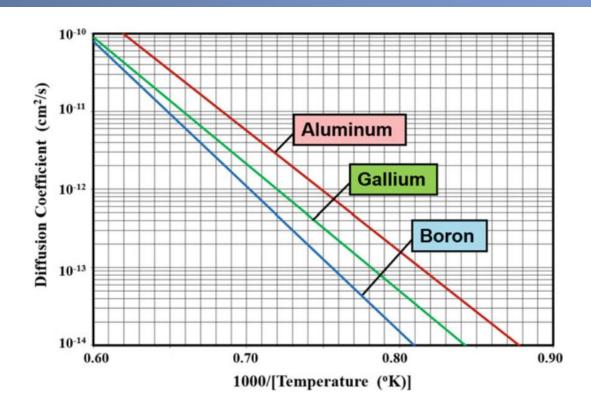
Mobilidade dos portadores


Fonte: Baliga, B. J. "Fundamentals of Semiconductor Devices", Springer.

Velocidade dos portadores versus E - Si

Por que existe uma saturação na velocidade?

Densidade de corrente de difusão


$$J_{df} = qD_n \frac{dn}{dx} - qD_p \frac{dp}{dx}$$

$$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = \frac{kT}{q}$$

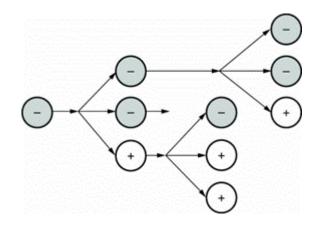
- Os mecanismos de deriva e difusão estão presentes em todos os dispositivos eletrônicos
- Na maioria das vezes, um dos fenômenos é predominante
- □ Num caso geral, ambas as densidades de corrente são importantes para prever o comportamento do dispositivo.

Fonte: Mohan, Undeland and Robbins: Power Electronics: Converters, Applications and Design. 2nd. Edition, John Wiley, 1994.

Coeficiente de difusão

- Unção de 100 μm: 98 horas para o Alumínio e 556 horas para o Boro (a 1200 °C);
- Boro IGBT's e MOSFET's; Alumínio e Gálio Tiristores e GTO's.

Ionização de Impacto


Ionização de Impacto

- Definido como o número de pares elétron/lacunas gerados por um elétron atravessando 1 cm da região de depleção na direção do campo elétrico.
- Lei de Chynoweth:

$$\alpha = a \exp\left(-\frac{b}{E}\right)$$

Onde a e b são parâmetros obtidos experimentalmente e dependentes da temperature.

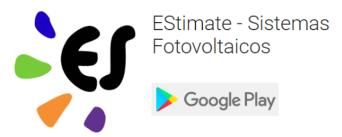
- O processo de ionização define um limite de campo elétrico no material;
- Acima deste limite, ocorre o fenômeno conhecido como avalanche.

Coeficiente de ionização \alpha

Quais dos dois materiais é capaz de bloquear mais tensão para o mesmo comprimento de junção?

Obrigado pela Atenção

www.gesep.ufv.br


https://www.facebook.com/gesep

https://www.instagram.com/gesep_vicosa/

https://www.youtube.com/channel/UCe9KOSGORXh hDBIcxMU2Nw

https://play.google.com/store/apps/details?id=br.developer.gesep.estimate